Mainframe Refresher Part-1

MQ Series-Page:1

MQ Series

Middleware
“Middleware is software that is used to move data from one program to another, shielding the developer from dependencies on communications protocols, operating systems and hardware platforms.”

Middleware products tend to fall in one of the categories - Message Oriented Middleware, Data connectivity, Remote Procedure Calls, Object Request Brokers and

Transaction Monitors.
MQSeries

· MQSeries is a Message Oriented Middleware product from IBM that runs on multiple platforms and enables applications to send messages to other applications. Basically, the sending application PUTs a message on a Queue, and the receiving application GETs the message from the Queue. The sending and receiving applications do not have to be on the same platform, and do not have to be executing at the same time.

· MQSeries takes care of all the storage, logging and communications details required to guarantee delivery of the message to the destination queue.

· In most cases, it will take care of translating the data when the source and destination use different character sets (EBCDIC on MVS vs. ASCII on NT or Unix). All the applications have to do is know the name of the Queue and agree on the meaning of the message.
MQSeries in Mainframe

In today’s mixed technology trend, the data transfer and dependency of mainframe and open systems with each other is very common.

For example, in a telecomm business, telephone numbers can be created and assigned from an open system application whereas still the orders can be logged from legacy applications. In this case, just before assignment of telephone number, legacy online - say IMS DC will send a message with address and other necessary information to the open system application message queue. Open system application will generate the telephone number and write it back to the legacy message queue. The mainframe application can read the queue and gets the telephone number and assigns to the order.

Application programmer life is very simple. He no needs to bother about how these complex connections are established or working across the platforms. MQ and system admin people take care of it. He just needs to know the queue names and how to issue the MQ calls. There are about 13 API calls. They can be grouped in 5 categories. Though there are semantic differences between programming languages, the basic verbs and data structures are the same if you are programming in C on Solaris, or COBOL on OS/390. MQ is directly supported by C, C++, Java, COBOL, Perl and PL/I.

API CALLS- MQCONN / MQCONNX / MQDISC

MQCONN connects the application to a named queue manager. If successful, a handle is returned that is passed to all subsequent MQ calls. MQCONNX is a variation of MQCONN, but it establishes a “trusted” connection to the queue

manager. This means that the application bypasses an IPC layer that all MQI calls normally go through, and operations are processed more rapidly. The disadvantage of MQCONNX is that an errant MQ application can adversely affect the queue

manager.

MQDISC disconnects an application from a queue manager.

API CALLS- MQOPEN / MQCLOSE

Open or close an MQSeries object. Usually associated with opening and closing queues.

API CALLS- MQPUT / MQGET

Get or put messages to a previously opened queue.

API CALLS- MQBEGIN/ MQCMIT / MQBACK

These are the MQSeries unit-of-work (syncpoint) co-ordination verbs. They can be used if the application requires MQSeries to control units of work. If an external transaction manager is being used then the application would use the calls

appropriate for that environment. See the section on XA Compliance for more information.

MQBEGIN marks the start of a unit of work. This is useful shorthand that means that every subsequent MQ operation will be processed under the same unit of work. The alternative to this is to include an option within each MQ operation that

explicitly states that the operation is to included under syncpoint.

MQCMIT commits a unit of work, so all MQPUT and MQGET operations are physically, rather than logically executed.

MQBACK “rolls out” a unit of work, effectively undoing the last group of operations under syncpoint.
API CALLS- MQINQ / MQSET

MQINQ provides the application with a way to retrieve the attributes of an MQ object. They may be inspected, altered, and then applied to the object using the MQSET verb.
MQSeries COBOL program

The working storage section of any MQ series program usually carries the following 4 IBM supplied copybooks.

1. CMQODV
(MQM-OBJECT-DESCRIPTOR)

2. CMQMDV
(MQM-MESSAGE-DESCRIPTOR)

3. CMQPMOV (MQM-PUT-MESSAGE-OPTIONS)

4. CMQGMOV (MQM-GET-MESSAGE-OPTIONS)

5. CMQV (MQM-CONSTANTS)

1.The first MQ Call in the procedure division is MQCONN. This call establishes the connection with the queue manager of open system application.

CALL 'MQCONN' USING
WS-QMGR

WS-HCONN

WS-COMPCODE

WS-REASON.

WS-QMGR should be populated with queue manager name before issuing this call. WS-HCONN will be populated with connection handle ID after successful execution of this call. This ID should be used in the subsequent calls that need access to this queue manager.

2.Open the queue in the queue manager (MQOPEN)

Usually one queue manager maintains more than one queue. Our application will be interested in only one queue of a particular queue manager. Using MQOPEN call opens the particular queue, object.

CALL 'MQOPEN' USING
WS-HCONN

MQOD

WS-OPENOPTIONS

WS-HOBJ

WS-COMPCODE

WS-REASON.

MQOD is the object descriptor copybook that needs be populated with object information. Example, MQOD-OBJECTNAME with Queue name, MQOD-OBJECTTYPE (MQOT-Q),WS-OPENOPTIONS (MQOO-INPUT-AS-Q-DEF). WS-HCONN should point to the connection handle ID of queue manager.

The object’s connection handle ID is populated with WS-HOBJ on the successful execution of MQOPEN. This should be used in all the subsequent operations with that object.

3.Get and Put a message in the queue (MQGET/ MQPUT)

CALL 'MQGET' USING
WS-HCONN

WS-HOBJ

 MQMD

MQGMO

WS-MSG-LTH-MAX

MQ-MESSAGE-FROM-OPEN-SYSTEM

WS-DATALENGTH

WS-COMPCODE

WS-REASON.

WS-HCONN is the connection handle of queue manager. WS-HOBJ is the object handle ID (queue). MQMD is the message descriptor copybook and MQMGO is the get message options copybook. The attributes of the message to be get/put are populated in MQMD (MQMD-CORRELID, MQMD-MSGTYPE, MQMD-PERSISTENCE, MQMD-EXPIRY etc) and the attributes of the ‘GET/PUT’ operation are mentioned in the MQMGO. (MQGMO-WAITINTERVAL is populated with wait time, MQGMO-OPTIONS is set with MQGMO-WAIT option)

4. Close the queue (MQCLOS)

CALL 'MQCLOSE' USING
WS-HCONN

WS-HOBJ

MQCO-NONE

WS-COMPCODE

WS-REASON.

WS-HCONN is the connection handle of the queue manager and WS-HOBJ is the handle ID of the object that is getting closed. MQCO-NONE is simple close of the object. MQCO-DELETE, MQCO-DELETE-PURGE can also be mentioned.

5. Disconnect the host queue manager. (MQDISCONN)

CALL 'MQDISC' USING
WS-HCONN

WS-COMPCODE

WS-REASON.

MQDISC API Call disconnects the queue manager represented by connection handle WS-HCONN.

In all the above calls, we mentioned WS-COMPCODE and WS-REASON as the last two arguments. They collectively called as return codes. Completion code usually contains MQCC-OK (0), MQCC-FAILED (1) or MQCC-WARNING (2). Reason code contains MQRC-NONE (0) when MQCC-OK. It has the respective reason code in case of failure and warning.

Terminology

Queue Manager:

A queue manager is a program that provides messaging services to applications. Applications that use the Message Queue Interface (MQI) can put and get messages from queues. The queue manager ensures that messages are sent to the correct queue or are routed to another queue manager. The queue manager processes both the MQI calls that are issued to it, and the commands that are submitted to it (from whatever source). The queue manager generates the appropriate completion codes for each call or command.

Queues:

A queue is a container for messages. Messages can be retrieved from, or added to, the queue, one at a time, by applications that are connected to the queue manager that owns the queue. A queue has a limited capacity in terms of both the maximum number of messages it can hold and the maximum length of those messages.

A queue instance is fully qualified by its queue manager and queue name.

Different Types of Queues:

· Local Queue:

A queue is local if the queue manager to which the application program is connected owns it. It is used to store messages for programs that use the same queue manager.

· Cluster Queue.

A cluster queue is a local queue that is known throughout a cluster of queue managers, that is, any queue manager that belongs to the cluster can send messages to it without the need of a remote definition or defining channels to the queue manager that owns it.

· Remote Queue.

A queue is “remote” if it is owned by a different queue manager. A remote queue definition is the local definition of a remote queue. A remote queue is not a real queue. It is a structure that contains some of the characteristics of a queue hosted by a different queue manager.

The application programmer can use the name of a remote queue just as he or she can use the name of a local queue. The MQSeries administrator defines where the queue actually is. Remote queues are associated with a transmission queue.

A program cannot read messages from a remote queue.You don’t need a remote queue definition for a cluster queue

· Transmission Queue.

This is a local queue with a special purpose. A remote queue is associated with a transmission queue. Transmission queues are used as an intermediate step when sending messages to queues that are owned by a different queue manager.

Typically, there is only one transmission queue for each remote queue manager (or machine). All messages written to queues owned by a remote queue manager are actually written to the transmission queue for this remote queue manager. The messages will then be read from the transmission queue and sent to the remote queue manager.

Using MQSeries clusters, there is only one transmission queue for all messages sent to all other queue managers in the cluster. Transmission queues are transparent to the application. They are used internally by the queue manager. When a program opens a remote queue, the attributes of the queue are obtained from the transmission queue. Therefore, the results of a program writing messages to a queue will be affected by the transmission queue characteristics

· Dynamic Queue.

Such a queue is defined "on the fly" when the application needs it. Dynamic queues may be retained by the queue manager or automatically deleted when the application program ends. Dynamic queues are local queues. They are often used in conversational applications, to store intermediate results. Dynamic queues can be:

Temporary queues that do not survive queue manager restarts

Permanent queues that do survive queue manager restarts

· Alias Queue.

Alias queues are not real queues but definitions. They are used to assign different names to the same physical queue. This allows multiple programs to work with the same queue, accessing it under different names and with different attributes.

· Model Queue.

A model queue is not a real queue. It is a collection of attributes that are used when a dynamic queue is created.

· Initiation Queue.

An initiation queue is a local queue to which the queue manager writes a trigger message when certain conditions are met on another local queue, for example, when a message is put into an empty message queue or in a transmission queue. Such a trigger message is transparent to the programmer. Two MQSeries applications monitor initiation queues and read trigger messages, the trigger monitor that starts applications and the channel initiator, which starts the transmission between queue managers.

Applications do not need to be aware of initiation queues, but the triggering mechanism implemented through them is a powerful tool to design and write asynchronous applications.

· Reply-to-Queue.

A request message must contain the name of the queue into which the responding program must put the reply message. This can be considered the “return address”. The name of this queue together with the name of the queue manager that owns it is stored in the message header. This is the responsibility of the application program.

· Repository Queue.

Repository queues have existed since Version 5.1 and Version 2.1 for OS/390. They are used in conjunction with clustering and hold either a full or a partial repository of queue managers and queue manager objects in a cluster (or group) of queue managers.

· Dead-Letter Queue.

A queue manager must be able to handle situations when it cannot deliver a message. Here are some examples:

The destination queue is full.

The destination queue does not exist.

Message puts have been inhibited on the destination queue.

The sender is not authorized to use the destination queue.

The message is too large.

The message contains a duplicate message sequence number.

When the above conditions are met, the messages are written to the dead-letter queue. Such a queue is defined when the queue manager is created. It will be used as a repository for all messages that cannot be delivered.

Synchronous and Asynchronous Messaging:

In synchronous messaging, the sending application waits for the reply before it resumes whereas in asynchronous messaging, the sending application proceeds with its own processing without waiting for its reply.

Channels:

A program may send messages to another program that runs in the same machine as the queue manager, or to a program that runs in a remote system, such as a server or a host. The queue manager transfers messages to other queue managers via channels using existing network facilities, such as TCP/IP, SNA or SPX. Channels are needed even the two Q managers reside in the same machine.

There are two types of channel. A message channel is a unidirectional communications link between two queue managers that is used to transfer messages between them. An MQI channel is bi-directional and connects an application (MQI client) to a queue manager on a server machine for the transfer of MQI calls and responses. Message channels are implemented by the programs called Message Channel Agents (MCA).

MQClient1 (--(-------(
 MQM1 MQM2

MQClient2 (--((------

Listener:

A listener is a program that listens for connection requests from channels that are started from the other end. When the listener receives a connection request, it initiates the startup of the channel at its end.

A channel has two ends; at each end a channel program called a message channel agent (MCA) runs to handle communications at the network level. These programs shield WebSphere MQ applications from the complexities of the network protocols.

An MCA can behave as a caller or a responder. A caller MCA starts a channel by sending a connection request to a responder MCA. A listener at the responder end detects the request and starts the responder. The responder then sends a response to the caller and the channel becomes operational so that WebSphere MQ messages can flow.

Process Definition:

A process definition object defines an application to a queue manager. For example, it contains the name of the program (and its path) to be triggered when a message arrives for it.

Triggers

The queue manager defines certain conditions as constituting trigger events.

If triggering is enabled for a queue and a trigger event occurs, the queue manager sends a trigger message to a queue called an initiation queue. The presence of the trigger message on the initiation queue indicates that a trigger event has occurred.

Trigger messages generated by the queue manager are not persistent. This has the effect of reducing logging (thereby improving performance), and minimizing duplicates during restart, so improving restart time.

The program, which processes the initiation queue, is called a trigger-monitor application, and its function is to read the trigger message and take appropriate action, based on the information contained in the trigger message. Normally this action would be to start some other application to process the queue, which caused the trigger message to be generated. From the point of view of the queue manager, there is nothing special about the trigger-monitor application—it is simply another application that reads messages from a queue (the initiation queue).

If triggering is enabled for a queue, you have the option to create a process-definition object associated with it. This object contains information about the application that processes the message, which caused the trigger event. If the process definition object is created, the queue manager extracts this information and places it in the trigger message, for use by the trigger-monitor application. The name of the process definition associated with a queue is given by the Process Name local-queue attribute. Each queue can specify a different process definition, or several queues can share the same process definition.

Triggering is useful when you don’t want deploy long running programs.

MQSeries Message Properties:

Persistence and Non-Persistence: Messages can be individually designated as persistent or non-persistent. Persistent messages are logged in files to enable recovery in case of system failure.

Correlation ID: There can be n number of messages in a queue. You can selectively read the message that has the specified correlation ID. Usually in mainframe we will use Terminal ID with date as correlation ID when putting/getting the message from the queue so that you will pickup the right message that belongs to your transaction.

Time to live: This is the expiry time. If within this time, the message is not picked up the receiving application, then the message will be expired.

Message Types:

Datagram (Fire and Forget): A datagram message is a message placed on a queue, for which no reply is expected.

Request/reply: An application places a message on a queue and expects a reply in return. This does not necessarily imply synchronous operation, as the process receiving the reply may be separate from the requester.

Publish/Subscribe Model: In this model messages are “broadcast” to interested participating applications in the MQ network. There are a number of elements within a publish & subscribe model.

The publisher- Publishers supply information about a number of topics. A topic can be anything the designer of the system wants, say stock market prices or seating arrangements for a theatre.

The broker - The publisher sends MQSeries messages containing topical data to a Publish & Subscribe broker (installed on a queue manager), which then forwards it to other brokers in the network.

The subscriber- registers an interest in a number of topics. Brokers then send MQSeries messages to subscribers containing data on the subscribers registered topics. It is possible for many publishers to publish the same topic (for

example, publishers for both NASDAQ and London Stock Exchange prices) and subscribers can register interest in any number of topics.

The publish and subscribe model can be quite sophisticated. Writing pub/sub applications can therefore be complicated, so IBM have provided another API, the AMI (Application Messaging Interface) for C, C++ and Java. This greatly simplifies

the creation of publishing and subscribing applications. Much of the configuration of the pub/sub environment is held in an external repository, which is referenced by the participating applications.
Unit of Work, Unit of recovery and Syncpoint

Messages are removed and added from queues in unit of work. Usually a unit of work starts with MQBGIN call and ends with MQCMIT or MQBACK call. The smallest unit of work is one message.

When an application reads a message from a queue, a message appears to have been removed, but in fact, it is still in storage until the application commits the unit of work.

 Application Process

 Unit of recovery

MQI Call1

MQI Call 2

Time Line

Application process ends

Application

Starts here

 MQPUT Call MQGET Call Commit (Point of consistency)

Unit of recovery is defined as the piece of work that changes data from one point of consistency to another.

A point of consistency is a moment at which all the recoverable data that an application program access is consistent.

Log and Recovery

All operations that affect the ‘state’ of the queue manager and its objects are logged to a log file. State points to object definition, queue content. Message channel states are logged separately by each channel.

There are two forms of logging – Circular and Linear. Circular log records are written sequentially across several files, then wrap back to the first file. Linear log records are written sequentially across the files. New files are allocated as current files fill. Circular logging is easy to manage, but is fatal if log is damaged. Linear logs are hard to maintain but can be achieved easily.

