
VSAM Tutorial

Virtual Storage Access Method - VSAM - is a data management system introduced by

IBM in the 1970s as part of the OS/VS1 and OS/VS2 operating systems. Although there

are still datasets that are best managed with the several other (non-VSAM) data

management methods, VSAM is a major component of modern IBM operating systems.

Since MVS 3.8 is one of those operating systems, I thought it might be useful to other

Hercules' users to set down some basic information about VSAM.

I have divided the material presented here into two main segments -

 Concepts and Facilities

 Access Method Services

In the first segment, I will try to provide a simple description of the components of

VSAM, with the goal of introducing VSAM to those who have not had practical

experience with it. I don't want to write a textbook, as I have several of those in my own

library and they can be quite dry and boring. But, it is my perception that quite a few

people are coming into the Hercules (and MVS) community who have not had any formal

exposure to this type of material and I think there may be some positive benefit to my

efforts.

In the second segment, I will try to cover most, if not all, of the functions provided by

Access Method Services. Access Method Services is the single, general-purpose utility

that is used to manipulate VSAM components by both Systems and Applications

Programmers. If you are more interested in the "how to" rather than the "why", this

second segment is probably where you will want to begin reading.

There is also an index at the bottom of the page to allow you to quickly locate the section

describing a particular AMS function.

Concepts and Facilities

VSAM was, by several accounts, intended to replace all of the earlier data management

systems in use by IBM's operating systems. Conventional (non-VSAM) access methods

generally provide only a single type of dataset organization. VSAM provides three:

 Key Sequenced Data Set (KSDS), where each record is identified for access by

specifying its key value - a sequence of characters embedded in each data record

which uniquely identify that record from all other records in the dataset. KSDS

datasets are similar to Indexed Sequential Access Method (ISAM) datasets, with

many of the same characteristics, but also having distinct advantages over ISAM.

 Entry Sequenced Data Set (ESDS), where each record is identified for access by

specifying its physical location - the byte address of the first data byte of each

record in relationship to the beginning of the dataset. ESDS datasets are similar

http://www.jaymoseley.com/hercules/vstutor/vstutor.htm#segment1#segment1
http://www.jaymoseley.com/hercules/vstutor/vstutor.htm#segment2#segment2
http://www.jaymoseley.com/hercules/vstutor/vstutor.htm#index#index

to Basic Sequential Access Methid (BSAM) or Queued Sequential Access

Method (QSAM) datasets.

 Relative Record Data Set (RRDS), where each record is identified for access by

specifying its record number - the sequence number relative to the first record in

the dataset. RRDS datasets are similar to Basic Direct Access Method (BDAM)

datasets.

VSAM datasets are frequently referred to as clusters. A KSDS cluster consists of two

physical parts, an index component, and a data component. ESDS and RRDS clusters

consist of only a single component, the data component.

KSDS Cluster Components

Each record in the data component of a KSDS cluster contains a key field, which must be

the same number of characters and occur in the same relative position in each record.

The records are stored in the data component in logical sequence based upon their key

field value. The index component of the KSDS cluster contains the list of key values for

the records in the cluster with pointers to the corresponding records in the data

component. The records in a KSDS may be accessed sequentially, in order by key value,

or directly, by supplying the key value of the desired record. The records of a KSDS

cluster may be fixed length or variable length. Records may be added or deleted at any

point within a KSDS cluster, and the affected record is inserted or removed, and the

surrounding records will be reorganized as required to maintain the correct logical

sequence.

ESDS Cluster Components

The records in an ESDS cluster are stored in the order in which they are entered into the

dataset. Each record is referenced by its relative byte address (RBA). In an ESDS

dataset of 100 byte records, the RBA of the first record is 0, the RBA of the second

record is 100, the RBA of the third record is 200, etc. The records in an ESDS may be

accessed sequentially, in order by RBA value, or directly, by supplying the RBA of the

desired record. The records of an ESDS cluster may be fixed length or variable length.

Records may not be deleted from an ESDS cluster, and they may only be added

(appended) to the end of the dataset, following records previously written.

RRDS Cluster Components

The records in an RRDS cluster are stored in fixed length slots. Each record is

referenced by the number of its slot, which is a number varying from 1 to the maximum

number of records which may be contained in the dataset. The records in an RRDS

cluster may be accessed sequentially, in relative record number order, or directly, by

supplying the relative record number of the desired record. The records of an RRDS

cluster must be of fixed length. Records may be added to an RRDS cluster by writing a

new record's data into an empty slot, and records may be deleted from an RRDS cluster,

thereby leaving an empty slot where the record that was deleted was previously stored.

copmuter
Highlight

copmuter
Highlight

copmuter
Highlight

copmuter
Highlight

copmuter
Highlight

copmuter
Highlight

Control Intervals

In non-VSAM data management methods, the unit of data that is moved between

memory and the storage device is defined by the block. In VSAM, the unit of data that is

transferred in each physical I/O operation is defined as a control interval. A control

interval contains records, control information, and (in the case of KSDS clusters)

possibly free space which may later be used to contain inserted records.

When a VSAM dataset is loaded, control intervals are created and records are written into

them. With KSDS clusters, the entire control interval is usually not filled. Some

percentage of free space is left available for expansion. With ESDS clusters, each control

interval is completely filled before records are written into the next control interval in

sequence. With RRDS clusters, control intervals are filled with fixed-length slots, each

containing either an active record or a dummy record. Slots containing dummy records

are available for use when new records are added to the dataset.

Control Areas

Control intervals are grouped together into control areas. The rules used for filling and

writing control areas are similar to those which apply for control intervals. For ESDS

and RRDS clusters, control areas are filled with control intervals that contain records.

For KSDS clusters, some of the control intervals in each control area may consist entirely

of free space that can be used for dataset expansion.

VSAM Catalogs

When a non-VSAM dataset is created, the user has the option, by means of the

DISP=(,CATLG) JCL entry, of creating a catalog entry for the dataset. The catalog

keeps track of the unit and volume on which the dataset resides and can be used for later

retrieval of the dataset. With VSAM datasets, creation of a catalog entry to record the

unit and volume, as well as many other characteristics of the dataset, is not optional.

Prior to VSAM, catalog entries for non-VSAM datasets were contained in OS CVOLS

(operating system control volumes). VSAM maintains its own catalog, which is itself a

KSDS cluster, into which catalog entries describing VSAM clusters are recorded. The

same VSAM catalog may also be used to contain the catalog entries for non-VSAM

datasets.

Later releases of OS/390, the operating system into which MVS evolved, and z/OS, the

current incarnation of MVS-OS/390, use yet another catalog system - the Integrated

Catalog Facility. On the latest versions of OS/390 and z/OS, ICF catalogs are the only

type of catalogs supported.

For MVS 3.8j, the relevant catalog system is the VSAM catalog, which is where

information for both VSAM and non-VSAM datasets is recorded.

copmuter
Highlight

copmuter
Highlight

Catalogs, Data Spaces, and Clusters - Oh My!

There is what may seem at first a complex and baffling set of relationships between the

underlying components of VSAM. I will begin with a graphic representation of the

components and their relationships to one another, and then describe the rules governing

the relationships.

 Master Catalog

Every system that uses VSAM has one, and only one, master catalog. The master

catalog contains entries about system datasets and VSAM structures used to manage the

operation of VSAM. It is possible for any dataset (VSAM or non-VSAM) to be

cataloged in the master catalog, but that is rarely allowed in well managed systems. In

most computer systems, the Systems Programming staff will have created user catalogs,

which are cataloged in the master catalog; all other users of the computer system will

only be allowed to catalog datasets in those user catalogs. In the chart, the objects which

have been shaded gray are the objects (excluding user catalogs) which are cataloged in

the master catalog. In a typical system, these objects would all be system datasets, such

as the system libraries (non-VSAM datasets) and page datasets.

The master catalog is created during the System Generation process and usually resides

on the System Residence volume. The master catalog "owns" all other VSAM resources

in a computer system, and this is denoted by the position of the master catalog (#1) in the

chart. To quote a fairy tale that was popular in the 1970s that was used to describe the

relationship of VSAM components, the master catalog is the "VSAM King".

User Catalogs

A user catalog is a catalog created to contain entries about application specific datasets.

The information defining a user catalog is stored into a catalog entry in the master

catalog. A production system might have any number of user catalogs, with the datasets

cataloged in a specific user catalog related by application type. There are two user

catalogs shown in the chart (#2 and #3).

Catalog - Volume Ownership

When a given direct access storage volume contains a VSAM catalog (either the master

catalog or a user catalog), the catalog must be the first VSAM object stored on that

volume. A VSAM catalog owns the volume on which it resides. All the VSAM

objects that are defined on a volume containing a VSAM catalog must be cataloged in the

catalog residing on that volume. A catalog can also own other volumes; however, those

volumes cannot also contain other VSAM catalogs. When the first VSAM object on a

volume that does not contain a VSAM catalog is defined, that volume becomes the

property of the catalog that contains its catalog entry.

VSAM Data Space

Before VSAM clusters can be created on a volume, one or more data spaces must be

created. A data space is an area of the direct access storage device that is exclusively

allocated for VSAM use. That is, the area occupied by the data space is recorded in the

Volume Table of Contents (VTOC) of the volume as allocated to a dataset, so that the

space will not be available for allocation to any other use, either VSAM or non-VSAM.

There are three data spaces shown in the chart (#4, #5, and #6).

Actually, when either the master catalog or a user catalog is defined, VSAM creates a

data space to hold the user catalog entries, allocating the amount of space specified for

the user catalog from the space available on the volume as a data space which will be

completely allocated to the catalog..

The name of the files that are recorded in the VTOC for space allocated to catalogs and

data spaces is generated by VSAM. However, they can be easily recognized for what

they contain from the high level qualifier of the generated name. For catalogs (both

copmuter
Highlight

copmuter
Highlight

master and user), the high level qualifier is Z9999992. For data spaces, the high level

qualifier is Z9999994.

Unique Clusters

It is possible to create VSAM clusters out of unallocated space on direct access storage.

This type of cluster has a designation of UNIQUE and essentially consists of a separate

data space which is utilized completely by the cluster created within it. From a data

management viewpoint, it is not a good idea to create unique VSAM clusters, although in

some cases there are system datasets which are created in this manner. There is an

indication of this type of cluster allocation on the chart (#9).

The most frequent manner of creating VSAM clusters is to suballocate the space required

for the cluster's records from available space in a previously defined data space.

Suballocated clusters are indicated on the chart for both system and user datasets (#7, #8,

and #10).

For all VSAM objects except suballocated clusters, there is an entry placed in the VTOC

of the direct access storage device volume on which the object resides. The entry name

generated by VSAM for these objects is usually not mnemonic enough to visually

indicate the contents of the VSAM object.

Non-VSAM Datasets

In addition to VSAM objects, non-VSAM datasets (residing on both tape and direct

access storage) may have entries in both the master catalog and user catalogs. As with

VSAM objects, it is best if only system datasets are cataloged in the master catalog.

Since the main function of cataloging non-VSAM datasets is to retain Unit and Volume

Serial information, the amount of information stored for a non-VSAM dataset is minimal

compared to the information stored for a VSAM object. Non-VSAM objects are

indicated on the chart as #11, #12, and #13.

Want to know more details? VSAM: Concepts, Programming, and Design by Jay

Ranade, Macmillan, 1986, ISBN 0029486300 is probably the definitive volume. I have

seen a copy, but never got around to owning one of my own. ABE has some copies if

you are interested. The follow on to that book was VSAM: Performance, Design, and

Fine Tuning, and it has really served me well in years gone by.

http://www.abebooks.com/
copmuter
Highlight

Access Method Services

Pre-VSAM data management required many utility programs for housekeeping -

 IEBGENER to copy the contents of sequential datasets

 IEHMOVE and IEBCOPY to copy, move, reorganize, expand, backup and restore

the contents of partitioned dataset

 IEBISAM to load, backup, restore, and reorganize the contents of ISAM datasets

to name a few. However, there is only a single utility for managing all of the

housekeeping needs of VSAM -

IDCAMS

which is also known by the functionality it provides - Access Method Services - or,

simply, AMS.

The basic JCL to run the utility is:

//IDCAMS JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* UTILITY COMMAND STATEMENTS */

/*

//

Some of the functions require additional DD statements when they are referenced by the

AMS command statements, but SYSPRINT and SYSIN are the only absolute

requirements.

There are a number of ways to organize the many functions that AMS provides. I will

present functions as they might be required on a newly generated system. For example,

the first task would be to set up user catalogs and data space to accommodate the creation

of VSAM clusters. At the end of this page I will place an Index table with links to

bookmarks so that anyone looking for a specific function can find it more easily.

It is not my intention to cover every single function provided by AMS, but what I include

here should cover the needs of 99% of users, at least as it relates to MVS 3.8j. For any

needs I may have overlooked, there are always the IBM manuals available online. All of

the example jobstreams on this page are contained in a single archive that is available to

download from my site: vsjcl.tgz.

http://www.jaymoseley.com/hercules/download/zips/vsjcl.tgz
copmuter
Highlight

copmuter
Highlight

Statement Syntax

The format of AMS commands is basically free form, and resembles REXX or PL/1.

The default statement margins are positions 2 through 72. Any command statement may

be continued from one line to the next by following the last parameter in a line with a

hyphen (-). A value may be continued by immediately following it with a plus sign (+).

A comment may be embedded in the command statements by enclosing the comment

characters with /* and */. Blank lines may be included at any point before, interspersed

with, or following AMS commands. Positional parameters are not optional and must

precede all keyword parameters. Keyword parameters can stand alone or they may have

an associated set of values or a subparameter list enclosed in parentheses. Parameters,

subparamenters, and values are separated from one another by spaces, commas, or

comment blocks.

Modal Commands

It is possible to include AMS commands to perform more than one function in a single

execution of the IDCAMS utility. Therefore, AMS sets a return code following the

execution of each command, and also maintains a maximum return code value for each

execution. AMS commands are provided to interrogate these return codes and

conditionally execute command statements based on the return code set during the

execution of prior commands.

The return codes set by AMS can be interpreted as -

 0 - Normal Completion - the functional command completed its processing

successfully

 4 - Minor Error - processing is able to continue, but a minor error occurred,

causing a warming message to be issued

 8 - Major Error - processing is able to continue, but a more severe error occurred,

causing major command specifications to be bypassed

 12 - Logical Error - generally, inconsistent parameters are specified, causing the

entire command to be bypassed

 16 - Severe Error - an error of such severity occurred that not only can the

command causing the error not be completed, the entire AMS command stream is

flushed

IF - THEN - ELSE Structure

The statement structure used to conditionally execute commands based upon the return

code values is an IF - THEN - ELSE structure:

IF {LASTCC | MAXCC} {operator} {numeric value}

 THEN {command} |

 DO

 {command set}

copmuter
Highlight

 END

[ELSE {command} |

 DO

 {command set}

 END]

In the IF statement, the return code to be tested is specified as one of LASTCC or

MAXCC, where LASTCC specifies the return code set during the execution of the

command just prior to the IF structure and MAXCC specifies the largest return code

value set during this execution if IDCAMS. The {operator} is specified as one of the

following comparison operators:

EQ or = equal to

NE or ¬= not equal to

GT or > greater than

LT or < less than

GE or >= greater than or equal to

LE ro <= less than or equal to

Following the THEN keyword or the optional ELSE keyword, either a single AMS

command or a block of AMS commands enclosed in a DO/END pair may be coded.

Null Commands

If a THEN keyword or ELSE keyword in an IF-THEN-ELSE structure is not followed by

an AMS functional command, or does not include a continuation character indicating that

a functional command follows on the next line, then a null THEN or ELSE clause is

assumed.

SET Command

The SET command may be used to set either the LASTCC value or the MAXCC value to

a specific value. Frequently the SET command is used to reset the return code(s) to a

value of 0 following an expected warning level error condition.

Defining User Catalogs

Model syntax for the command:

DEFINE USERCATALOG

 (NAME(entryname)

 { CYLINDERS(primary[secondary]) |

 RECORDS(primary[secondary]) |

 TRACKS(primary[secondary]) }

 VOLUME(volser)

 [FILE(ddname)]

 [TO(date) | FOR(days)]

 [DATA (

 [CYLINDERS(primary[secondary]) |

 RECORDS(primary[secondary]) |

 TRACKS(primary[secondary])]

 [INDEX (

 [CYLINDERS(primary[secondary]) |

 RECORDS(primary[secondary]) |

 TRACKS(primary[secondary])]

 [CATALOG(mastercatname[/password])]

Note that I have simplified the syntax diagram by excluding advanced optional

parameters.

Space Allocation

Since a VSAM catalog owns the volume on which it resides, the VSAM catalog must be

the first VSAM object stored on a volume. When a VSAM catalog is defined, AMS

automatically defines a data space on that volume and then allocates space for the VSAM

catalog from within that data space. Separate space allocation subparameters can be

specified for the index and data components. If space is allocated only to the catalog as a

whole, and separate SPACE subparameters are not specified for the index and data

components, the entire data space (created automatically by AMS) is assigned to the

catalog. In this situation, it is then necessary to use a separate AMS function command to

define one or more data spaces owned by the catalog in which to create future VSAM

objects. If separate index and data component space allocation subparameters are coded.

the SPACE parameter for the catalog as a whole defines the size of the data space that is

created, and the SPACE subparameters that are specified for the data and index

components determine the portion of the data space that is assigned to the catalog. The

remainder of the data space becomes available for other VSAM objects. In most cases, a

cylinder of space will be adequate for catalogs.

Examples

The following jobstream will define two user catalogs - UCMVS801 to reside on 3380

volume MVS801 and UCMVS802 to reside on 3380 volume MVS802.

copmuter
Highlight

//DEFUCAT1 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//MVS801 DD UNIT=3380,VOL=SER=MVS801,DISP=OLD

//MVS802 DD UNIT=3380,VOL=SER=MVS802,DISP=OLD

//SYSIN DD *

 DEFINE USERCATALOG (

-

 NAME (UCMVS801)

-

 VOLUME (MVS801)

-

 TRACKS (13259 0)

-

 FOR (9999))

-

 DATA (TRACKS (15 5))

-

 INDEX (TRACKS (15))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL CATALOG(UCMVS801)

 DEFINE USERCATALOG (

-

 NAME (UCMVS802)

-

 VOLUME (MVS802)

-

 TRACKS (15)

-

 FOR (9999))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL CATALOG(UCMVS802)

/*

//

The SYSOUT from this jobstream can be viewed as DEFUCAT1. The difference

between the two catalogs created shows how using the SPACE parameter on the optional

DATA and INDEX components can be used to define both the catalog and also leave

available data space in a single operation. If you look at the catalog listing in the

SYSOUT (following the AMS statements defining the user catalog UCMVS801), you

can see that under MVS801's dataspace extent information 13,259 tracks have been

allocated to the data space, of which only 30 have been used (to contain the user

catalog). Compare this to the listing for MVS802 and you can see that only 15 tracks

were allocated for the data space and all 15 have been used for the catalog. Before any

VSAM objects can be created on volume MVS802, a separate data space will need to be

defined. I will do that next under the Defining Data Space section.

http://www.jaymoseley.com/hercules/vstutor/defucat1.htm
http://www.jaymoseley.com/hercules/vstutor/vstutor.htm#AMSdefspace#AMSdefspace

The following jobstream will define a single user catalog - UCMVOL to reside on 3380

volume MVS803. Initially it will have all the remaining space on volume MVS803 for

suballocation. In the Defining Data Space section, I will add data spaces to this catalog

on two additional volumes.

//DEFUCAT2 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//MVS803 DD UNIT=3380,VOL=SER=MVS803,DISP=OLD

//SYSIN DD *

 DEFINE USERCATALOG (

-

 NAME (UCMVOL)

-

 VOLUME (MVS803)

-

 TRACKS (13259 0)

-

 FOR (9999))

-

 DATA (TRACKS (15 5))

-

 INDEX (TRACKS (15))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL CATALOG(UCMVOL)

/*

//

The SYSOUT from this jobstream can be viewed as DEFUCAT2. At this point there is

no significant difference between this user catalog and UCMVS801 defined in the

previous jobstream.

Defining Data Space

Model syntax for the command:

DEFINE SPACE

 ({CANDIDATE

 CYLINDERS(primary[secondary]) |

 RECORDS(primary[secondary]) RECORDSIZE(average

maximum) |

 TRACKS(primary[secondary])}

 VOLUMES(volser[volser...])

http://www.jaymoseley.com/hercules/vstutor/vstutor.htm#AMSdefspace#AMSdefspace
http://www.jaymoseley.com/hercules/vstutor/defucat2.htm

 [FILE(ddname)]))

 [CATALOG(catname[/password])]

A data space can be defined implicitly for a new VSAM object by coding the UNIQUE

parameter in the DEFINE command for the object. This causes a new data space, of the

requested size, to be defined for the sole use of that object. From a data management

viewpoint, it is usually better to allocate an entire direct access storage volume as VSAM

data space and suballocate space for defined objects from that space. The purpose of the

DEFINE SPACE AMS command is to allocate data space and place it under the control

of a user catalog.

Examples

The following jobstream will define data space using the remainder of the available space

on volume MVS802, which is controlled by the user catalog UCMVS802, previously

defined.

//DEFSPAC1 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//MVS802 DD DISP=OLD,UNIT=3380,VOL=SER=MVS802

//SYSIN DD *

 DEFINE SPACE (

-

 TRACKS(13244)

-

 VOLUMES(MVS802)

-

 FILE(MVS802)

-

)

-

 CATALOG(UCMVS802)

 IF MAXCC = 0 THEN DO

-

 LISTCAT ALL CATALOG(UCMVS802)

-

 END

/*

//

The SYSOUT from this jobstream can be viewed as DEFSPAC1. If you look at the

catalog listing in the SYSOUT, you can see that under MVS802's dataspace extent

information that a second DATASPACE has been added with 13,244 tracks available for

allocation.

http://www.jaymoseley.com/hercules/vstutor/defspac1.htm

The following jobstream will define two additional data spaces for user catalog

UCMVOL, one of which is only a CANDIDATE, which means no actual space is

allocated, but the volume is reserved for future use by the catalog, thereby preventing any

other VSAM catalog from allocating objects on it.

//DEFSPAC2 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//MVS804 DD DISP=OLD,UNIT=3380,VOL=SER=MVS804

//MVS805 DD DISP=OLD,UNIT=3380,VOL=SER=MVS805

//SYSIN DD *

 DEFINE SPACE (

-

 TRACKS(13259)

-

 VOLUMES(MVS804)

-

 FILE(MVS804)

-

)

-

 CATALOG(UCMVOL)

 DEFINE SPACE (

-

 CANDIDATE

-

 VOLUMES(MVS805)

-

 FILE(MVS805)

-

)

-

 CATALOG(UCMVOL)

 IF MAXCC = 0 THEN DO

-

 LISTCAT ALL CATALOG(UCMVOL)

-

 END

/*

//

The SYSOUT from this jobstream can be viewed as DEFSPAC2. If you look at the

catalog listing in the SYSOUT, you can see that information for two additional volumes

has been added - MVS804 and MVS805. The DATASPACE extent information for

MVS804 shows 13,259 tracks available. This is the entire space originally available on

the volume since there was no space used for the catalog, which resides in the data space

on volume MVS803. Although there is a volume entry for MVS805, you can see that

there is no DATASPACE extent information, which is the indication that MVS805 is

http://www.jaymoseley.com/hercules/vstutor/defspac2.htm

simply a CANDIDATE for future allocation for this catalog. A display of the Volume

Table of Contents (VTOC) for volume MVS805 would show no entries made for a data

space.

If you have been following the examples in sequence to this point, here is a chart

showing the configuration of the user catalogs and data spaces defined:

Defining an Alias

There are several ways that VSAM determines which catalog to use when a catalog

search is required, either to locate a catalog entry for an existing object or to create a

catalog entry one for a new object. Most AMS commands can explicitly specify which

catalog is to be used by including a CATALOG parameter in the command. The

inclusion of a CATALOG parameter overrides any other method for determining the

catalog to use. Another way to explicitly define the catalog to be used is by including the

JOBCAT and/or STEPCAT DD statements in the JCL for the job. If neither of these

methods is used to designate the catalog to use, AMS uses the high level qualifier of the

object or dataset name and attempts to determine the catalog to search. If the high level

qualifier matches the name of a user catalog, that user catalog is used. Otherwise, the

master catalog is used.

It is possible to establish any number of alias entries to associate multiple high level

qualifier values with a specific user catalog. The AMS command to create aliases is

DEFINE ALIAS.

Model syntax for the command:

DEFINE ALIAS

 (NAME(aliasname)

 RELATE(entryname))

 [CATALOG(catname[/password])]

Example

The following jobstream will define six aliases related to the three user catalogs I have

previously defined. The first five simply relate the serial number of the direct access

storage device controlled by the user catalog to the catalog. For the first two user

catalogs, this is a one to one relationship. However, since the third user catalog controls

space on three volumes, there are three aliases defined, one for the serial number of each

of the three volumes. The sixth alias is an example of how a production application

might be defined as an alias to a particular user catalog.

Notice that the LISTCAT command does not specify a user catalog from which the

entries are to be listed. This is because the ALIASes are defined in the master catalog,

and they point to user catalogs.

//DEFALIAS JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 DEFINE ALIAS (NAME(MVS801)

-

 RELATE(UCMVS801))

 DEFINE ALIAS (NAME(MVS802)

-

 RELATE(UCMVS802))

 DEFINE ALIAS (NAME(MVS803)

-

 RELATE(UCMVOL))

 DEFINE ALIAS (NAME(MVS804)

-

 RELATE(UCMVOL))

 DEFINE ALIAS (NAME(MVS805)

-

 RELATE(UCMVOL))

 DEFINE ALIAS (NAME(PAYROLL)

-

 RELATE(UCMVOL))

 IF MAXCC = 0 THEN DO

-

 LISTCAT ALIAS

-

 END

/*

//

The SYSOUT from this jobstream can be viewed as DEFALIAS.

Defining a VSAM Cluster

Model syntax for the command:

DEFINE CLUSTER

 (NAME(entryname)

 {CYLINDERS(primary] secondary]) |

 RECORDS(primary[secondary]) |

 TRACKS(primary[secondary])}

 VOLUMES(volser[volser...])

 [BUFFERSPACE(size)]

 [CONTROLINTERVALSIZE(size)]

 [ERASE | NOERASE]

 [FILE(ddname)]

 [FREESPACE(CI-percent[CA-percent]|0 0)]

 [IMBED | NOIMBED]

 [INDEXED | NONINDEXED | NUMBERED]

 [KEYS(length offset|64 0)]

 [MODEL(entryname[/password][catname[/password]])]

 [RECORDSIZE(average maximum)]

 [REPLICATE | NOREPLICATE]

 [REUSE | NOREUSE]

 [SPEED | RECOVERY]

http://www.jaymoseley.com/hercules/vstutor/defalias.htm

 [TO(date) | FOR(days)]

 [UNIQUE | SUBALLOCATION]

 [DATA

 ([NAME(entryname)])

 [INDEX

 ([NAME(entryname)])

 [CATALOG(catname[/password])]

Note that I have simplified the syntax diagram by excluding advanced optional

parameters.

Because the DEFINE CLUSTER command is used to define all three types of VSAM

clusters - Key Sequenced, Entry Sequenced, and Relative Record - the command model

is large, with some parameters that are never used together and many parameters that are

used only to specify advanced overrides that can best be left to default values. The three

main parameter lists that may be specified are grouped by CLUSTER, DATA, and

INDEX. These lists of parameters apply to the CLUSTER as a whole, the DATA

component of the cluster, and the INDEX component of the cluster. Almost all

parameters that may be specified for the CLUSTER can also be specified individually for

the DATA and INDEX components. The INDEX component is only present when a Key

Sequenced cluster is being defined. In my experience, the only parameter that is

frequently supplied for the DATA and INDEX component is the NAME, otherwise AMS

will generate a non-intuitive name for that component of the cluster. In a production

environment, another reason for specifying individual DATA and INDEX parameters

might be for a performance consideration - the INDEX and DATA components of the

cluster could be split and placed on separate direct access storage volumes.

Space Allocation

One of the three space allocation subparameters must be coded to specify the size of the

cluster. Space may be requested in terms of cylinders, tracks, or records. Both a primary

and secondary quantity may be specified for either of the three specification units. The

primary quantity is the amount of space initially allocated to the cluster. The secondary

quantity is the amount of additional space allocated when the available space is

completely used and an additional record is added to the cluster. The number of times

that a cluster can be expanded (secondary quantities of space allocated) varies based on

several factors, but may be as high as 123 times. The RECORD method of allocation

space is preferred, as AMS will calculate the appropriate amount of space for the type of

direct access storage device upon which the cluster is allocated.

The VOLUMES parameter specifies one or more direct access storage volumes on which

space may be allocated for the cluster.

Where the space is obtained for allocation is determined by the UNIQUE /

SUBALLOCATION parameter. If UNIQUE is specified, free space must exist on the

VOLUMES specified; an independent data space is created on the volume and is

allocated entirely to the cluster being defined. From a data management viewpoint, this

is usually not a good idea. A better method is to allow AMS to suballocate the required

space from an already defined VSAM data space.

Type of Cluster - Key Sequenced, Entry Sequenced, or Relative Record

The presence of the INDEXED, NONINDEXED, or NUMBERED parameters determine

the type of cluster created. INDEXED specifies a Key Sequenced cluster;

NONINDEXED specifies an Entry Sequenced cluster; and NUMBERED specifies a

Relative Record cluster.

Record Size

The RECORDSIZE parameter specifies both the size of the logical record which can be

written to the cluster and also whether the records will be fixed or variable length. If the

integer values of both average and maximum are identical, the records which can be

written to the cluster will be fixed length and of the size specified by the value. If the

values specified differ, the records written to the cluster may be in varying length, up to

the value specified for maximum.

Keys (INDEXED clusters only)

The KEYS parameter specifies the length and position (relative to the beginning of the

record, with 0 indicating the first character) of the primary key in the records written to

the cluster.

Re-Usable Clusters

The REUSE parameter allows clusters to be defined that may be reset to empty status

without deleting and re-defining them. This is most often used for clusters used as work

datasets.

The parameters below are optional and default values may be accepted. I have

included them because they may be of utility to some Hercules/MVS 3.8 users.

Buffer Space

BUFFERSPACE is used to specify the minimum amount of buffer space required to

process the dataset. The value specified affects the control interval size. AMS ordinarily

chooses a control interval size large enough that two control intervals and one index

record will fit in the specified amount of buffer space. Regardless of what value is coded

here (or the default), the value may be overridden at execution time by JCL parameter.

copmuter
Highlight

Control Interval Size

In most cases, the CONTROLINTERVALSIZE parameter should be omitted. This

allows AMS to choose the most efficient value for the dataset. A control interval can

range from 512 to 32,768 bytes in size. If the size is between 512 and 8,192 bytes, a

multiple of 512 should be specified. If it is between 8,192 and 32,768 bytes, a multiple

of 2,048 should be specified. If the size is not a multiple of the appropriate value, AMS

rounds the size up to the next appropriate multiple. If CONTROLINTERVALSIZE is

specified for the INDEX component of a KSDS, the specified size must be 512, 1,024,

2,048, or 4,096.

Erase

The ERASE parameter specifies that when the cluster is deleted, the space occupied by

the cluster should be physically erased by overwriting the space with binary zeros prior to

freeing the space for reuse.

Free Space (INDEXED clusters only)

The FREESPACE parameter specifies a percentage of space to leave unallocated for

future expansion. The percentage applies when records are initially loaded into the

cluster and when control interval and control area splits occur as records are inserted

between existing records. If FREESPACE is not specified, control intervals are filled as

completely as possible and no space is left for addition of records in the future.

Replicate and Imbed (INDEXED clusters only)

REPLICATE specifies that VSAM should write each index record on a track as many

times as it will fit. IMBED specifies that sequence set records are to be imbedded with

the data in the data component of the cluster. When the sequence set is imbedded in the

data component, VSAM writes each sequence set record on the first track of its

associated control area. IMBED automatically implies REPLICATE. Without

imbedding, the sequence set records are kept in the index component with other index

records. The use of REPLICATE and IMBED may improve performance at the expense

of an increase in storage requirements.

Model

The MODEL parameter is used to specify an existing cluster from which the attributes

used to define the new cluster should be copied. When MODEL is used, the only

additional parameter that is required is NAME. If additional parameters are specified

with MODEL, they will override attributes copied from the existing cluster.

copmuter
Highlight

Pre-Formatting Space

The SPEED / RECOVERY parameters are used to specify whether or not VSAM should

preformat the space allocated to the cluster as part of the DEFINE process. Specifying

RECOVERY (the default) causes the allocated space to be filled with end-of-file

markers. If the initial load of the cluster with data should fail before completion, the end-

of-file markers can be used to resume the load from the point of failure. For large

datasets, this can save recovery time, however there is a trade-off in time to write the end-

of-file markers during the definition of the cluster.

Examples

The following jobstream will define a Key Sequenced cluster.

//DEFCLUSK JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* DELETE KSDS CLUSTER, IF IT EXISTS

*/

 DELETE MVS801.STUDENT.FILE CLUSTER PURGE

 /* DEFINE KSDS CLUSTER

*/

 DEFINE CLUSTER (

-

 NAME(MVS801.STUDENT.FILE)

-

 VOLUMES(MVS801)

-

 RECORDSIZE(80 80)

-

 RECORDS(50 10)

-

 KEYS(10 0)

-

 INDEXED)

-

 DATA (

-

 NAME(MVS801.STUDENT.FILE.DATA))

-

 INDEX (

-

 NAME(MVS801.STUDENT.FILE.INDEX))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(MVS801.STUDENT)

/*

//

The SYSOUT from this jobstream can be viewed as DEFCLUSK. Note that by

specifying the NAME parameter for both the DATA and INDEX component, it is easy to

see the relationship of these two components to the CLUSTER in the catalog listing.

The following jobstream will define an Entry Sequenced cluster.

//DEFCLUSE JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* DELETE ESDS CLUSTER, IF IT EXISTS

*/

 DELETE PAYROLL.TIMECLOK.FILE CLUSTER PURGE

 /* DEFINE ESDS CLUSTER

*/

 DEFINE CLUSTER (

-

 NAME(PAYROLL.TIMECLOK.FILE)

-

 VOLUMES(MVS803 MVS804)

-

 RECORDSIZE(22 22)

-

 RECORDS(100 100)

-

 NONINDEXED)

-

 DATA (

-

 NAME(PAYROLL.TIMECLOK.FILE.DATA))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(PAYROLL.TIMECLOK)

/*

//

The SYSOUT from this jobstream can be viewed as DEFCLUSE. Note that since I

specified two volumes for allocation of space to this dataset, the catalog listing indicates

that the initial space allocation was made on volume MVS803 (VOLFLAG----PRIME

indicates this is the primary extent) and that the second volume has been set as a

candidate for future allocation (VOLFLAG----CANDIDATE).

http://www.jaymoseley.com/hercules/vstutor/defclusk.htm
http://www.jaymoseley.com/hercules/vstutor/defcluse.htm

The following jobstream will define a Relative Record cluster.

//DEFCLUSR JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* DELETE RRDS CLUSTER, IF IT EXISTS

*/

 DELETE MVS802.HRTITLE.TABLE CLUSTER PURGE

 /* DEFINE RRDS CLUSTER

*/

 DEFINE CLUSTER (

-

 NAME(MVS802.HRTITLE.TABLE)

-

 VOLUMES(MVS802)

-

 RECORDSIZE(30 30)

-

 RECORDS(100 100)

-

 NUMBERED

-

 REUSE)

-

 DATA (

-

 NAME(MVS802.HRTITLE.TABLE.DATA))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(MVS802.HRTITLE)

/*

//

The SYSOUT from this jobstream can be viewed as DEFCLUSR.

Loading Records into VSAM Clusters

Model syntax for the command:

REPRO {INFILE(ddname[/password]

 [ENVIRONMENT(DUMMY)]) |

 INDATASET(entryname[/password]

http://www.jaymoseley.com/hercules/vstutor/defclusr.htm

 [ENVIRONMENT(DUMMY)])}

 {OUTFILE(ddname[/password]) |

 OUTDATASET(entryname[/password])}

 [FROMKEY(key) | FROMADDRESS(address) |

 FROMNUMBER(number) | SKIP(count)]

 [REPLACE | NOREPLACE]

 [REUSE | NOREUSE]

 [TOKEY(key) | TOADDRESS(address) |

 TONUMBER(number) | COUNT(count)]

Although in actual production environments the initial loading of records into VSAM

clusters might require a program to be written in COBOL, PL/1, or Assembler, the AMS

REPRO command can often be used for this purpose. In later sections I will show how

the REPRO command is also used for other purposes, but here the goal is the initial

loading of VSAM clusters from source data contained in a another dataset.

The only two required parameters are those which specify the input dataset (the source of

the records to be loaded) and the output cluster, which is to be loaded. The input may be

specified by either the INFILE parameter or the INDATASET parameter. When INFILE

is used, the records are read from the DD name specified, and a DD statement must be

supplied in the JCL matching the specified name. When INDATASET is used, the

source of the input is located by searching the VSAM catalog for a matching object.

The ENVIRONMENT subparameter is used to specify, in the case of ISAM input

objects, that DUMMY records are to be included along with active records.

The VSAM cluster to receive the records read from the input dataset is specified by either

OUTFILE or OUTDATASET. OUTFILE designates that the target cluster is specified

by the inclusion of a DD statement in the JCL, while OUTDATASET designates that the

cluster is to be located through the VSAM catalog.

Bypassing Input Records

FROMKEY may be included to specify either the full or generic key value that defines

the starting point of the copy operation. FROMKEY is only applicable when the input

dataset is a KSDS VSAM cluster or an ISAM dataset.

FROMADDRESS may be included to specify the RBA value that defines the starting

point of the copy operation. FROMADDRESS is only applicable when the input dataset

is a KSDS or ESDS VSAM cluster.

FROMNUMBER may be included to specify the relative record number that defines the

starting point of the copy operation. FROMNUMBER is only applicable when the input

dataset is a RRDS VSAM cluster.

SKIP may be included to bypass the specified number of records from the input dataset

before starting the copy operation.

Restarting an Aborted Partial Load

REPLACE may be specified to cause existing records in the output cluster to be replaced

when a duplicate record is read from the input dataset. REPLACE is applicable for

KSDS and RRDS clusters. REPLACE may also be used to merge input from subsequent

REPRO operations with different input datasets to the same target dataset, where the

possibility of duplicate records. If an attempt is made to add a duplicate record and

REPLACE is not specified, an error message and the input record is discarded; on the

fourth occurrence of a duplicate record, the REPRO operation is terminated and the

remainder of the input file is not processed.

Resetting the Output Cluster to Empty

The REUSE parameter may be specified to cause the output cluster to be reset to empty

status before loading commences. In order for the REUSE parameter to be allowable, the

output cluster must have been defined with the REUSE attribute.

Ending the Load Operation Before End of Input

TOKEY may be included to specify either the full or generic key value that defines the

ending point of the copy operation. TOKEY is only applicable when the output cluster is

a KSDS VSAM cluster.

TOADDRESS may be included to specify the RBA value that defines the ending point of

the copy operation.. TOADDRESS is only applicable when the output dataset is a KSDS

or ESDS VSAM cluster.

TONUMBER may be included to specify the relative record number that defines the

ending point of the copy operation. TONUMBER is only applicable when the output

dataset is a RRDS VSAM cluster.

COUNT may be included to terminate the copy operation after the specified number of

records have been copied to the output cluster.

Examples

The following jobstream will load Relative Record cluster MVS802.HRTITLE.TABLE

using data from an instream file, which is first processed by the IEBDG utility to trim the

records to the correct record length.

//REPRO01 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

 ------[IEBDG step and instream data omitted]------

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SEQFILE DD DSN=*.IEBDG.SYSUT2,DISP=(OLD,DELETE)

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 REPRO INFILE(SEQFILE)

-

 OUTDATASET(MVS802.HRTITLE.TABLE)

-

 REUSE

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(MVS802.HRTITLE)

/*

//

The SYSOUT from this jobstream can be viewed as REPRO01. Because the cluster was

defined with the REUSE attribute, specifying the REUSE parameter on the REPRO

command resets the status of the output cluster to empty before any records are copied.

If more records later need to be added to this table, they simply need to be added to the

instream dataset and the job resubmitted to reload the cluster, replacing the existing

records with the records from the instream dataset.

The following jobstream will load Key Sequenced cluster MVS801.STUDENT.FILE

using data from an instream dataset.

//REPRO02 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SEQFILE DD *

 ------[instream data omitted]------

/*

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 REPRO INFILE(SEQFILE)

-

 OUTDATASET(MVS801.STUDENT.FILE)

-

 REPLACE

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(MVS801.STUDENT)

http://www.jaymoseley.com/hercules/vstutor/repro01.htm

/*

//

The SYSOUT from this jobstream can be viewed as REPRO02. This cluster was not

defined as REUSEable, however, specifying the REPLACE parameter on the REPRO

command causes records in the output cluster with key values identical to records copied

from the input dataset to be replaced. I submitted this job twice to illustrate - note that

under the DATA component in the catalog listing the total number of records is 97, the

count of records processed. The number of records retrieved and updated is also 97,

which indicates that the second time the job was submitted, all of the records read from

the input dataset had a matching record already existing in the output cluster.

Using REPRO to Backup Clusters

The REPRO command can also be used to make backup copies of the contents of VSAM

clusters.

Examples

The following jobstream will create a backup copy of the contents of Entry Sequenced

cluster PAYROLL.TIMECLOK.FILE on tape.

//REPRO03 JOB 'JAY MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//*

//**

//* CREATE A SEQUENTIAL BACKUP OF AN ESDS

//**

//*

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//TIMECLOK DD DSN=PAYROLL.TIMECLOK.FILE,DISP=SHR

//BACKUP DD DSN=BACKUP.TIMECLOK,UNIT=TAPE,DISP=(NEW,KEEP),

// VOL=SER=B00001,

// DCB=(RECFM=FB,LRECL=22,BLKSIZE=2200)

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 REPRO INFILE(TIMECLOK) -

 OUTFILE(BACKUP)

/*

//

The SYSOUT from this jobstream can be viewed as REPRO03.

The following jobstream will create a backup copy of the contents of KS cluster

MVS801.STUDENT.FILE in another KS cluster, MVS802.STUDENT.BACKUP.

http://www.jaymoseley.com/hercules/vstutor/repro02.htm
http://www.jaymoseley.com/hercules/vstutor/repro03.htm

//REPRO04 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* DELETE BACKUP CLUSTER, IF IT EXISTS

*/

 DELETE MVS802.STUDENT.BACKUP CLUSTER PURGE

 /* DEFINE BACKUP KSDS CLUSTER

*/

 DEFINE CLUSTER (

-

 NAME(MVS802.STUDENT.BACKUP)

-

 VOLUMES(MVS802)

-

 MODEL(MVS801.STUDENT.FILE))

-

 DATA (

-

 NAME(MVS802.STUDENT.BACKUP.DATA))

-

 INDEX (

-

 NAME(MVS802.STUDENT.BACKUP.INDEX))

 IF LASTCC = 0 THEN

-

 REPRO INDATASET(MVS801.STUDENT.FILE)

-

 OUTDATASET(MVS802.STUDENT.BACKUP)

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(MVS802.STUDENT)

/*

//

The SYSOUT from this jobstream can be viewed as REPRO04. The target of the

REPRO is first deleted and then defined, using the MODEL parameter to copy the

attributes of the source KSDS. If this were an actual backup strategy, it would probably

be better to have the backup cluster defined once, at the same time as the cluster to be

backed up, but with the addition of the REUSE attribute. Then the REPRO command

could use the REUSE parameter to reset the backup dataset to empty prior to the copy

operation in order to save the time to delete and re-define it each run.

http://www.jaymoseley.com/hercules/vstutor/repro04.htm

Restoring from Backup

Restoring the contents of a VSAM cluster from a backup created in the examples above

is identical to the process used to load VSAM clusters with REPRO. Unless the cluster is

defined with the REUSE attribute, it is necessary to first delete and then redefine the

cluster in order to remove the existing records that will be replaced with those from the

backup. Then execute a jobstream containing the REPRO command using the backup

copy as the source for the input.

Exporting VSAM Clusters

The EXPORT command is used to create a portable copy of a VSAM cluster. When the

REPRO command is used to copy a cluster, only the data records are written to the output

dataset. Before the records can be restored, the cluster must be recreated by executing an

AMS DEFINE command. EXPORT copies the information required to completely

reconstruct the cluster without the necessity of executing a separate DEFINE. The

portable copy of the exported cluster must always be contained in a non-VSAM,

sequential dataset.

Model syntax for the command:

EXPORT entryname[/password]

 {OUTFILE(ddname) | OUTDATASET(entryname)}

 [ERASE | NOERASE]

 [INFILE(ddname)]

 [INHIBITSOURCE | NOINHIBITSOURCE]

 [INHIBITTARGET | NOINHIBITTARGET]

 [PURGE | NOPURGE]

 [TEMPORARY | PERMANENT]

Note that there is no CATALOG parameter for the EXPORT command. Unless the

object's entry is in the master catalog or the first qualifier of the object's name is an alias

of the user catalog containing the object, you must include either a JOBCAT or

STEPCAT DD statement in the JCL.

When EXPORT is executed with the PERMANENT option (the default), if the portable

copy of the cluster is successfully created, AMS will attempt to delete the original

object. By default, the attributes of the cluster which affect a delete function that are in

effect at the time of the EXPORT will control the delete processing. If the ERASE

attribute was specified for the cluster, the cluster will be overwritten with binary zeros

before it is deleted. The ERASE / NOERASE option may be specified on the EXPORT

command to override the attribute specified when the cluster was defined. If a retention

period was specified for the cluster and has not been reached, the delete will not take

place. The PURGE / NOPURGE option may be specified on the EXPORT command to

override the retention status of the source cluster.

copmuter
Highlight

INHIBITSOURCE may be specified to mark the source cluster as "read only" after the

successful completion of the EXPORT. Likewise, INHIBITTARGET may be specified

to mark any copy of the cluster created from the portable copy as "read only".

Example

The following jobstream will create a temporary portable copy of the Relative Record

cluster MVS802.HRTITLE.TABLE on tape. Note that since I have specified the backup

tape disposition as CATLG and the high level qualifier of the backup dataset name is

MVS802, the tape dataset will be catalogued in the same user catalog as the VSAM

cluster from which it is copied.

//EXPORT1 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//BACKUP DD DSN=MVS802.HRTITLE.BACKUP,

// UNIT=TAPE,DISP=(NEW,CATLG)

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 EXPORT MVS802.HRTITLE.TABLE

-

 OUTFILE(BACKUP)

-

 TEMPORARY

/*

//

The SYSOUT from this jobstream can be viewed as EXPORT1. Because TEMPORARY

was specified on the EXPORT command, the source cluster remains after the portable

copy is created.

Restoring Exported Clusters

A sequential dataset created by the EXPORT command may only be processed as input

to the IMPORT command, which will result in an equivalent copy of the original source

cluster. AMS first searches the target catalog for an entry with the same name as the

cluster being imported. If an entry does not exist, AMS uses the catalog information

included in the portable copy to define a new catalog entry, and then it reloads the

object. If a catalog entry does exist, AMS verifies that the entry has been marked as

exported by a previous EXPORT command with the TEMPORARY option. If this is the

case, AMS assumes that the cluster is being restored from the previously exported copy;

AMS deletes the old object, defines a new catalog entry of it using the catalog

information in the exported copy, and then reloads the object. If a catalog entry exists,

but it is not marked as having been previously exported, the IMPORT command fails.

Model syntax for the command:

http://www.jaymoseley.com/hercules/vstutor/export1.htm

IMPORT {INFILE(ddname) | INDATASET(entryname)}

 {OUTFILE(ddname[/password]) |

 OUTDATASET(entryname[/password])}

 [ERASE | NOERASE]

 [INTOEMPTY]

 [OBJECTS((entryname

 [FILE(ddname)]

 [NEWNAME(newname)]

 [VOLUMES(volser[volser...])])

 [(entryname...)...])]

 [PURGE | NOPURGE]

 [CATALOG(catname[/password])]

Note that I have simplified the syntax diagram by excluding advanced optional

parameters.

If the non-VSAM dataset containing the portable copy is cataloged, the INDATASET

parameter may be used to access the input dataset.

Example

The following jobstream will restore the Relative Record cluster

MVS802.HRTITLE.TABLE from the portable copy which exists on tape.

//IMPORT1 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//BACKUP DD DSN=MVS802.HRTITLE.BACKUP,

// UNIT=TAPE,DISP=(OLD,KEEP)

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 IMPORT INFILE(BACKUP)

-

 OUTDATASET(MVS802.HRTITLE.TABLE)

-

 PURGE

/*

//

The SYSOUT from this jobstream can be viewed as IMPORT1.

In addition to being used for making backup copies, the EXPORT and IMPORT

commands can also be used to move VSAM clusters from one computer system to

another. Several of the parameter options on the IMPORT command are designed

specifically for this purpose.

http://www.jaymoseley.com/hercules/vstutor/import1.htm

The OBJECTS parameter specifies the original name of the object(s) being imported and

allows a new name and alternate target volumes to be specified, which override those

contained in the portable copy. Other attributes of the restored cluster may be changed

with the ALTER command. A few attributes, including space allocation and some of the

attributes which affect performance can not be altered. If it is necessary to change those

attributes, it is necessary to define a new empty cluster with the desired attributes and

specify the INTOEMPTY parameter. The INTOEMPTY parameter specifies that the

portable copy is being imported into an already existing empty cluster. Remember the

MODEL parameter of the DEFINE command can be used to easily create a cluster that is

based on another cluster which closely approximates the attributes desired for the target

cluster, and then additional parameters can be specified to exactly tailor the DEFINE

command.

Alternate Indexes

If you are reading this page in sequence, I have not discussed alternate indexes yet, but

there are implications for using EXPORT and IMPORT that affect alternate indexes that

need to be mentioned.

The EXPORT and IMPORT commands can be used to back up and restore alternate

indexes as well as clusters. When the PERMANENT option is used to export an alternate

index, all paths associated with the alternate index are deleted; and when a cluster that

has paths and alternate indexes associated with it is exported using the PERMANENT

option, all alternate index and path entries are automatically deleted. This means that

alternate indexes associated with a base cluster should be exported before the base cluster

itself is exported. And when these objects are then imported, the base cluster should be

imported first, followed by all of its alternate indexes. Backing up and restoring in this

sequence ensures that all catalog entries for the cluster, its alternate indexes, and its paths

are backed up and restored properly.

Backing Up and Restoring Catalogs

The REPRO command can be used to copy the contents of user catalogs as a means of

creating a backup copy that may later be restored. When using REPRO to restore from a

backup copy of a user catalog, the output catalog must be empty.

Restoring a user catalog from a backup is not an operation for the faint hearted. There

are many pieces of related information that must mesh in order for VSAM catalogs to

operate properly. It only takes a small error to render the entire structure unusable.

Unfortunately, with MVS 3.8j we don't have access to a better method of backing up and

restoring catalog information.

Examples

The following jobstream will create a backup of the contents of user catalog UCMVS802

on tape.

http://www.jaymoseley.com/hercules/vstutor/vstutor.htm#AMSalter#AMSalter

//REPROUC1 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//STEPCAT DD DSN=UCMVS802,DISP=SHR

//SYSPRINT DD SYSOUT=A

//BACKUP DD UNIT=TAPE,DISP=(NEW,KEEP),

// DSN=BACKUP.UCMVS802,

// DCB=BLKSIZE=31744

//SYSIN DD *

 REPRO INDATASET(UCMVS802)

-

 OUTFILE(BACKUP)

/*

//

The SYSOUT from this jobstream can be viewed as REPROUC1.

The following jobstream will restore user catalog UCMVS802 from the backup copy

created in the previous jobstream. Because the target of the REPRO must be empty, it is

necessary to first delete and redefine the user catalog.

//REPROUC2 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS1 EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 DELETE (UCMVS802)

-

 USERCATALOG FORCE PURGE

 IF LASTCC = 0 THEN

-

 DEFINE USERCATALOG (

-

 NAME (UCMVS802)

-

 VOLUME (MVS802)

-

 TRACKS (15)

-

 FOR (9999))

/*

//IDCAMS2 EXEC PGM=IDCAMS,REGION=4096K,COND=(0,NE)

//STEPCAT DD DSN=UCMVS802,DISP=SHR

//SYSPRINT DD SYSOUT=A

//BACKUP DD UNIT=(TAPE,,DEFER),DISP=(OLD,KEEP),

// DSN=BACKUP.UCMVS802,VOL=SER=B00002

//SYSIN DD *

 REPRO INFILE(BACKUP)

http://www.jaymoseley.com/hercules/vstutor/reprouc1.htm

-

 OUTDATASET(UCMVS802)

/*

//

The SYSOUT from this jobstream can be viewed as REPROUC2. The messages issued

for each of the objects restored:

IDC1575I ONLY BACKUP DEFINES <object name>

are issued because the information used to create the catalog entry for the object is

obtained solely from the backup tape.

Deleting VSAM and non-VSAM Objects

The DELETE command removes the entry for the specified object(s) from the catalog

and optionally removes the object, thereby freeing up the space occupied by the object (in

the case of datasets residing on direct access storage).

Model syntax for the command:

DELETE (entryname[/password][entryname[/password] ...])

 [ALIAS |

 ALTERNATEINDEX |

 CLUSTER |

 GENERATIONDATAGROUP |

 NONVSAM |

 PAGESPACE |

 PATH |

 SPACE |

 USERCATALOG

 [ERASE | NOERASE]

 [FILE(ddname)]

 [FORCE | NOFORCE]

 [PURGE | NOPURGE]

 [SCRATCH | NOSCRATCH]

 [CATALOG(catname[/password])]

From the model, it is obvious that a variety of VSAM and non-VSAM objects may be

deleted with the DELETE command. The DELETE command deletes all objects

associated with the entry name specified.

http://www.jaymoseley.com/hercules/vstutor/reprouc2.htm

By default, objects with a retention period that has not expired will not be deleted. This

behavior can be overridden by the inclusion of the PURGE option.

The ERASE / NOERASE option may be specified to override the ERASE attributed

specified for the object in the catalog.

The FORCE option may be specified to cause the deletion of specific objects (SPACE,

USERCATALOG, GENERATIONDATAGROUP) even though they may be non-empty.

The SCRATCH option may be specified to cause the associated entry for the object to be

removed from the Volume Table of Contents. This is most often applicable to non-

VSAM datasets.

The CATALOG option may not be specified for DELETE commands used to delete user

catalogs. User catalog entries may only be deleted from the master catalog. Note: It is

possible with MVS 3.8j to catalog a user catalog entry in another user catalog, but if

you do, you cannot delete it.

Example

The following jobstream will delete a non-VSAM dataset, a user catalog, and a user

catalog alias. You may also have noticed the DELETE command used in several earlier

jobstreams, which can provide additional examples.

//DELETE1 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* DELETE CATALOGUED NON-VSAM DATASET

*/

 DELETE (MVS501.REGISTER.DATA)

-

 NONVSAM SCRATCH PURGE

 /* DELETE ALIAS TO USER CATALOG

*/

 DELETE (MVS501)

-

 ALIAS

 /* DELETE USER CATALOG

*/

 DELETE (UCMVS501)

-

 USERCATALOG FORCE PURGE

/*

//

The SYSOUT from this jobstream can be viewed as DELETE1. The entry for the non-

VSAM dataset is removed from both the catalog (equivalent to the UNCATLG function

in the IEHPROGM utility) and from the VTOC on volume MVS501 (equivalent to the

SCRATCH function in the IEHPROGM utility) because the SCRATCH option was

included.

Listing Catalog Entries

The LISTCAT command is provided to list the information from catalog entries. If you

have been reading this page in sequence, you have already seen output from the

LISTCAT command in the SYSOUT listings from my examples of many of the other

AMS commands. It is almost always a good idea to list the catalog entries for objects

immediately following their creation to visually verify that all of the options you intended

to specify were entered correctly and had the desired effect on the entry created. It is also

frequently necessary to list fields from the catalog entry for a VSAM object to diagnose

problems.

Model syntax for the command:

LISTCAT

 [ALIAS] │

 [ALTERNATEINDEX] │

 [CLUSTER] │

 [DATA] │

 [GENERATIONDATAGROUP] │

 [INDEX] │

 [NONVSAM] │

 [PAGESPACE] │

 [PATH] │

 [SPACE] │

 [USERCATALOG]

 [CREATION(days)]

 [ENTRIES(entry name[/password] [entryname[/password]...]) |

 LEVEL(level)]

 [EXPIRATION(days)]

 [NAME | HISTORY | VOLUME | ALLOCATION | ALL]

 [OUTFILE(ddname)]

 [CATALOG(catname[/password])]

All parameters of the LISTCAT command are optional.

http://www.jaymoseley.com/hercules/vstutor/delete1.htm

 The first group of parameters (beginning with ALIAS and concluding with

USERCATALOG) are positional parameters that specify which types of catalog entries

are to be listed. One or more of these parameters may be specified. If none are specified,

the listing will include all entries from the catalog regardless of type.

CREATION specifies a number of days; entries are listed only if they were created the

specified number of days ago or earlier.

EXPIRATION also specifies a number of days; entries are listed only if they will expire

in the specified number of days or earlier.

The parameters NAME, HISTORY, VOLUME, ALLOCATION, and ALL specify the

type of information to list for catalog entries. NAME (the default) specifies that only the

name and entry type should be listed. HISTORY specifies that the name, entry type,

ownerid, creation date, and expiration date should be listed. VOLUME specifies that all

information listed by the HISTORY parameter, plus the volume serial numbers and

device type should be listed. ALLOCATION specifies that all information listed by the

VOLUME parameter, plus the detail information about space allocation should be listed.

ALL specifies that all information from the catalog entry should be listed.

OUTFILE may be used to specify that the output from the LISTCAT command should be

written to a DD name other than SYSPRINT.

Selecting Objects to List

Either the ENTRIES or LEVEL parameter is used to select objects in the catalog for

which the entries will be listed. The names of one or more objects can be included as

subparameters of the ENTRIES parameter to select specific objects. It is also possible to

use generic names to select groups of entries based upon the structure of their names. A

generic name uses an asterisk (*) instead of a node name at one or more levels to refer to

objects that have any node names at that level. The LEVEL provides an alternative for

specifying a generic name. When one or more initial qualifiers are specified in a LEVEL

parameter, the parameter refers to all objects whose names begin with the specified

qualifiers, no matter how long their names are.

Example

The following jobstream illustrates several options of the LISTCAT command.

//LISTCAT1 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* LIST ALIAS ENTRIES FROM MASTER CATALOG

*/

 LISTCAT ALIAS

-

 NAME

 /* LIST NAMES OF ALL ENTRIES FROM CATALOG UCMVOL

*/

 LISTCAT NAME

-

 CAT(UCMVOL)

 /* LIST ENTIRE ENTRY FOR NON-VSAM ENTRIES IN UCMVS802

*/

 LISTCAT NONVSAM

-

 ALL

-

 CAT(UCMVS802)

 /* LIST ALLOCATION INFO FOR DATA IN UCMVS801

*/

 LISTCAT DATA

-

 ALLOCATION

-

 CAT(UCMVS801)

/*

//

The SYSOUT from this jobstream can be viewed as LISTCAT1.

Printing the Contents of Objects

The PRINT command is used to print the contents of both VSAM and non-VSAM

datasets.

Model syntax for the command:

PRINT {INFILE(ddname[/password]) |

 INDATASET(entryname[/password])}

 [CHARACTER | DUMP | HEX]

 [FROMKEY(key) | FROMADDRESS(address) |

 FROMNUMBER(number) | SKIP(number)]

 [OUTFILE(ddname)]

 [TOKEY(key) | TOADDRESS(address) |

 TONUMBER(number) | COUNT(number)]

http://www.jaymoseley.com/hercules/vstutor/listcat1.htm

The only required parameter is either INFILE or INDATASET to specify the dataset

from which records are to be printed. When INFILE is used, the records are read from

the DD name specified, and a DD statement must be supplied in the JCL matching the

specified name. When INDATASET is used, the source of the input is located by

searching the VSAM catalog for a matching object. There is no CATALOG option for

the PRINT command, so if INDATASET is used and there is no alias defined for the

catalog in which the object can be located, it will be necessary to use either a JOBCAT or

STEPCAT DD statement for the proper catalog.

Bypassing Input Records

FROMKEY may be included to specify either the full or generic key value that defines

the starting point of the print operation. FROMKEY is only applicable when the input

dataset is a KSDS VSAM cluster or an ISAM dataset.

FROMADDRESS may be included to specify the RBA value that defines the starting

point of the print operation. FROMADDRESS is only applicable when the input dataset

is a KSDS or ESDS VSAM cluster.

FROMNUMBER may be included to specify the relative record number that defines the

starting point of the print operation. FROMNUMBER is only applicable when the input

dataset is a RRDS VSAM cluster.

SKIP may be included to bypass the specified number of records from the input dataset

before printing is to begin.

Ending the Print Operation Before End of Input

TOKEY may be included to specify either the full or generic key value that defines the

ending point of the print operation. TOKEY is only applicable when the output cluster is

a KSDS VSAM cluster.

TOADDRESS may be included to specify the RBA value that defines the ending point of

the print operation.. TOADDRESS is only applicable when the output dataset is a KSDS

or ESDS VSAM cluster.

TONUMBER may be included to specify the relative record number that defines the

ending point of the print operation. TONUMBER is only applicable when the output

dataset is a RRDS VSAM cluster.

COUNT may be included to terminate the print operation after the specified number of

records have been printed.

Output Format

CHARACTER, DUMP (the default), or HEX may be specified to control the format of

the output. CHARACTER specifies that each byte in the logical record is to be printed as

a character. DUMP specifies that each byte in the logical record is to be printed in both

hexadecimal and character format. HEX specifies that each byte in the logical record is

to be printed as two hexadecimal digits.

Examples

The following jobstream illustrates the use of the PRINT command with three datasets,

one non-VSAM and two VSAM.

//PRINT1 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//HRTABLE DD DSN=MVS501.SERVICES.DATA,DISP=OLD,

// UNIT=3350,VOL=SER=MVS501

//TIMECLOK DD DSN=PAYROLL.TIMECLOK.FILE,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* PRINT NON-VSAM DATASET

*/

 PRINT INFILE(HRTABLE)

-

 CHAR COUNT(10)

 /* PRINT ESDS DATASET

*/

 PRINT INFILE(TIMECLOK)

-

 HEX SKIP(500) COUNT(25)

 /* PRINT KSDS DATASET

*/

 PRINT INDATASET(MVS801.STUDENT.FILE)

-

 FROMKEY(00003) TOKEY(00004)

-

 DUMP

/*

//

The SYSOUT from this jobstream can be viewed as PRINT1.

http://www.jaymoseley.com/hercules/vstutor/print1.htm

Changing Object Attributes

The ALTER command can be used to change most of the attributes that are specified at

the time a VSAM object is DEFINEd.

Model syntax for the command:

ALTER entryname[/password]

 [ADDVOLUMES(volser[volser...])]

 [BUFFERSPACE(size)]

 [EMPTY | NOEMPTY]

 [ERASE | NOERASE]

 [FREESPACE(CI-percent[CA-percent])]

 [KEYS(length offset)]

 [NEWNAME(newname)]

 [RECORDSIZE(average maximum)]

 [REMOVEVOLUMES(volser[volser...])]

 [SCRATCH | NOSCRATCH]

 [TO(date) | FOR(days)]

 [UPGRADE | NOUPGRADE]

 [CATALOG(catname[/password])]

Note that I have simplified the syntax diagram by excluding advanced optional

parameters.

For the majority of the parameters, the meaning is identical as when the parameter is used

in the corresponding DEFINE command, so I will not be repeat any of that detail here.

Alternate Indexes

The Alternate Index capabilities of VSAM allow the creation of one or more secondary

index structures for a VSAM object based upon data in the records of the object other

than the primary key. This capability allows for a Key Sequenced dataset to be accessed

in a different order other than the primary key and also allows the creation of an index for

a non-indexed object, such as an Entry Sequenced cluster.

There are three steps to creating an alternate index:

1. Use the DEFINE command to create the alternate index

2. Use the BLDINDEX command to build the keys for the alternate index

3. Use the DEFINE command to create a PATH relating the alternate index to the

base cluster

The Alternate Index cluster is a Key Sequenced cluster that is used to hold the alternate

key values along with their associated pointers to the records in the base cluster.

Model syntax for the DEFINE ALTERNATEINDEX command:

DEFINE ALTERNATEINDEX

 (NAME(entryname)

 RELATE(entryname[/password])

 {CYLINDERS(primary[secondary]) | RECORDS(primary[

secondary]) |

 TRACKS(primary[secondary])}

 VOLUMES(volser[volser...])

 [BUFFERSPACE(size)]

 [CONTROLINTERVALSIZE(size)]

 [ERASE | NOERASE]

 [FILE(ddname)]

 [FREESPACE(CI-percent[CA-percent]|0 0)

 [IMBED | NOIMBED]

 [KEYS(length offset|64 0)]

 [MODEL(entryname[/password][catname[/password

 [RECORDSIZE(average maximum|4086 32600)]

 [REPLICATE | NOREPLICATE]

 [REUSE | NOREUSE]

 [SPEED | RECOVERY]

 [TO(date) | FOR(days)]

 [UNIQUE | SUBALLOCATION]

 [UNIQUEKEY | NONUNIQUEKEY]

 [UPGRADE | NOUPGRADE])

 [DATA

 ([NAME(entryname)])

 [INDEX

 ([NAME(entryname)])

 [CATALOG(catname[/password])]

Note that I have simplified the syntax diagram by excluding advanced optional

parameters.

Many of the entries are identical to the DEFINE command for a Key Sequenced cluster.

I will not repeat the detail discussion of those here.

RELATE names the existing base cluster for which the alternate index is to be defined.

The cluster named may be either a KSDS or ESDS cluster. The cluster may not be

defined with the REUSE attribute, may not be a user catalog, and may not be another

alternate index.

UNIQUEKEY specifies that there is only one record in the base cluster corresponding to

each alternate key in the alternate index. NONUNIQUEKEY (the default) specifies that

each record in the base cluster may have multiple alternate keys in the alternate index.

UPGRADE specifies that the alternate index will automatically be kept up to date when

records are modified in the base cluster. NOUPGRADE specifies that the alternate index

will not be kept up to date. There is a performance penalty when UPGRADE is

specified, but there may be little utility in having an alternate index that is not kept "in

sync" with the base cluster.

The RECORDSIZE refers not to the size of the base cluster record, but is computed

based upon the size of the keys in both the base cluster and the alternate index and

whether the keys are unique not nonunique. If the keys are unique, the records in the

alternate index are fixed length, and the length is the value computed as

 5 bytes of control information

 the length of the alternate key

 the length of the primary key (for KSDS) or the length of an RBA (for ESDS),

which is 4 bytes

As for a fixed length KSDS, this length is specified for both the average and maximum

value in the RECORDSIZE parameter.

If the keys are nonunique, the records in the alternate index will be variable in length, and

the average length is computed as:

 5 bytes of control information

 the length of the alternate key

 the length of the primary key (for KSDS) or the length of an RBA (for ESDS),

which is 4 bytes multiplied by the expected average number of nonunique keys

The maximum length is computed as:

 5 bytes of control information

 the length of the alternate key

 the length of the primary key (for KSDS) or the length of an RBA (for ESDS),

which is 4 bytes multiplied by the maximum number of nonunique keys

The contents of the 5 bytes of control information stored in the

alternate index record indicate the type of the base cluster the alternate

index points to and the length of the keys:

 the first byte indicates the type of base cluster - x'01' indicates

KSDS; x'00' indicates ESDS

 the second byte indicates the length of the base cluster pointers

in the alternate index record - x'primary key length' if the base

cluster is KSDS or x'04' if the base cluster is ESDS

 the third and fourth bytes are a halfword value indicating the

number of occurrences of the base cluster pointers within the

alternate index record; e.g. will contain x'0001' for a unique

alternate key

 the fifth byte indicates the length of the alternate key

Examples

The following jobstream illustrates the use of DEFINE to create two alternate indexes,

one over an existing Key Sequenced Data Set and one over an existing Entry Sequenced

Data Set.

//DEFAIX1 JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//TIMECLOK DD DSN=PAYROLL.TIMECLOK.FILE,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* DELETE ALTERNATE INDEX, IF IT EXISTS

*/

 DELETE MVS801.STUDENT.AIX ALTERNATEINDEX PURGE

 /* DEFINE ALTERNATE INDEX WITH UNIQUE KEYS -> KSDS

*/

 DEFINE ALTERNATEINDEX (

-

 NAME(MVS801.STUDENT.AIX)

-

 RELATE(MVS801.STUDENT.FILE)

-

 VOLUMES(MVS801)

-

 RECORDSIZE(37 37)

-

 TRACKS(10 5)

-

 KEYS(22 10)

-

 UNIQUEKEY

-

 UPGRADE)

-

 DATA (

-

 NAME(MVS801.STUDENT.AIX.DATA))

-

 INDEX (

-

 NAME(MVS801.STUDENT.AIX.INDEX))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(MVS801.STUDENT)

 /* DELETE ALTERNATE INDEX, IF IT EXISTS

*/

 DELETE PAYROLL.TIMECLOK.AIX ALTERNATEINDEX PURGE

 /* DEFINE ALTERNATE INDEX WITH NONUNIQUE KEYS -> ESDS

*/

 DEFINE ALTERNATEINDEX (

-

 NAME(PAYROLL.TIMECLOK.AIX)

-

 RELATE(PAYROLL.TIMECLOK.FILE)

-

 FILE(TIMECLOK)

-

 VOLUMES(MVS803 MVS804)

-

 RECORDSIZE(18 900)

-

 TRACKS(15 15)

-

 KEYS(9 12)

-

 NOUPGRADE)

-

 DATA (

-

 NAME(PAYROLL.TIMECLOX.AIX.DATA))

-

 INDEX (

-

 NAME(PAYROLL.TIMECLOX.AIX.INDEX))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(PAYROLL.TIMECLOX)

/*

//

The SYSOUT from this jobstream can be viewed as DEFAIX1. At this point, all that has

been created is a cluster to contain the alternate keys. In the next step, the keys will be

built from the base cluster with the BLDINDEX command.

http://www.jaymoseley.com/hercules/vstutor/defaix1.htm

Model syntax for the BLDINDEX command:

BLDINDEX {INFILE(ddname[/password]) |

INDATASET(entryname[/password])}

 {OUTFILE(ddname[/password] [ddname[/password]...]) |

 OUTDATASET(entryname[/password] [

entryname[/password]...])}

 [WORKFILES(ddname ddname)]

 [CATALOG(catname[/password])]

Note that I have simplified the syntax diagram by excluding advanced optional

parameters.

AMS reads the base cluster sequentially and constructs alternate key/pointer pairs from

each data record in the base cluster. If the base cluster is a KSDS, each pointer consists

of a prime key value; if the base cluster is an ESDS, each pointer consists of an RBA

pointer.

AMS sorts the alternate key/pointer pairs to load records into ascending key sequence.

For a large base cluster, the sort may have to be carried out using work files, which will

require DD names in the JCL.

The sorted alternate key/pointer pairs are used to load records into the data component of

the alternate index. Control information is added to each alternate key/pointer pair that

tells VSAM the length of the alternate key, describes whether the pointers are prime keys

or RBA's, indicates whether the keys are unique or nonunique, and gives the length of

each prime key pointer.

Either INFILE or INDATASET may be used to specify the base cluster. INFILE

identifies a DD statement that names the base cluster, while INDATASET names the

base cluster to be located through the catalog.

Similarly, OUTFILE or OUTDATASET specify the target alternate index. Multiple

alternate indexed may be loaded from the same base cluster with a single execution of the

BLDINDEX command, so OUTFILE may specify multiple DD names and

OUTDATASET may specify multiple alternate index entry names.

By default, an internal sort will be performed to place the alternate keys into ascending

sequence. If there is insufficient virtual storage to perform the sort, an external sort will

be performed automatically. If an external sort is required, two work files must be

provided. The default DD names for these files is IDCUT1 and IDCUT2. These DD

names may be overridden by the WORKFILES parameter.

Examples

The following jobstream uses the BLDINDEX command to build the alternate keys and

load the alternate indexes defined by the previous example jobstream.

//BLDINDEX JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//TIMECLOK DD DSN=PAYROLL.TIMECLOK.FILE,DISP=SHR

//TIMECLKX DD DSN=PAYROLL.TIMECLOK.AIX,DISP=SHR

//IDCUT1 DD

VOL=SER=MVS802,UNIT=3380,DISP=OLD,AMP='AMORG'

//IDCUT2 DD

VOL=SER=MVS802,UNIT=3380,DISP=OLD,AMP='AMORG'

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* BUILD THE ALTERNATE INDEX FOR KSDS

MVS801.STUDENT.FILE */

 BLDINDEX INDATASET(MVS801.STUDENT.FILE)

-

 OUTDATASET(MVS801.STUDENT.AIX)

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(MVS801.STUDENT)

 /* BUILD THE ALTERNATE IX FOR ESDS

PAYROLL.TIMECLOK.FILE */

 BLDINDEX INFILE(TIMECLOK)

-

 OUTFILE(TIMECLKX)

 IF LASTCC = 0 THEN

-

 LISTCAT ALL LEVEL(PAYROLL)

/*

//

The SYSOUT from this jobstream can be viewed as BLDINDEX. You can see that there

are nonunique alternate key values for PAYROLL.TIMECLOK by comparing the REC-

TOTAL entry under the STATISTICS section for the base cluster -

PAYROLL.TIMECLOK.FILE.DATA (840 records) - and for the alternate index -

PAYROLL.TIMECLOK.AIX.DATA (210 records).

At this point, there are two Key Sequenced clusters that contain data which is logically

related. In order to be used, the clusters must be physically related, which requires the

creation of a PATH.

http://www.jaymoseley.com/hercules/vstutor/bldindex.htm

Model syntax for the DEFINE PATH command:

DEFINE PATH

 (NAME(entryname)

 PATHENTRY(entryname[/password])

 [FILE(ddname)]

 [MODEL(entryname[/password] [catname[/password]])]

 [TO(date) | FOR(days)]

 [CATALOG(catname[/password])]

Note that I have simplified the syntax diagram by excluding advanced optional

parameters.

NAME specifies the name given to the path. PATHENTRY specifies the name of the

alternate index cluster to which this path will point. When the path is created, accessing

the VSAM object for the path will return the records from the base cluster in sequence by

the values of the keys in the alternate index.

Examples

The following jobstream uses the DEFINE PATH command to build the paths for the

alternate indexes built by the previous jobstream.

//DEFPATH JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* BUILD THE PATH FOR MVS801.STUDENT.AIX

*/

 DEFINE PATH (

-

 NAME(MVS801.STUDENT.NAME.IX)

-

 PATHENTRY(MVS801.STUDENT.AIX))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL ENTRY(MVS801.STUDENT.NAME.IX)

 /* BUILD THE PATH FOR PAYROLL.TIMECLOK.AIX

*/

 DEFINE PATH (

-

 NAME(PAYROLL.TIMECLOK.EID.IX)

-

 PATHENTRY(PAYROLL.TIMECLOK.AIX))

 IF LASTCC = 0 THEN

-

 LISTCAT ALL ENTRY(PAYROLL.TIMECLOK.EID.IX)

/*

//

The SYSOUT from this jobstream can be viewed as DEFPATH. By looking at the

ASSOCIATIONS in the LISTCAT output, you can see that the PATH has related all

component parts of the alternate index cluster and the base record cluster for each of the

example sets.

To illustrate the effect of the alternate index, here is the SYSOUT from PRINT

commands showing a segment of the data processed by way of both the base cluster and

the path for each of the two example sets: AIXPRINT.

Defining Generation Data Groups

A generation data group is a group of related datasets, usually created in chronological

order. Using a generation data group to control the creation and retention of this type of

dataset group greatly simplifies data management. Before creating the first generation of

a generation data group, two steps are required. First, the generation data group base,

which contains the rules for managing the group, is defined using AMS. Second, a model

must be created for the DCB parameters of the individual datasets to be created.

Model syntax for the DEFINE GENERATIONDATAGROUP command:

DEFINE GENERATIONDATAGROUP

 (NAME(entryname)

 LIMIT(limit)

 [EMPTY | NOEMPTY]

 [SCRATCH | NOSCRATCH]

 [TO(date) | FOR(days)])

 [CATALOG(catname[/password])]

LIMIT specifies the maximum number (from 1 to 255) of generations that are to be

kept.

EMPTY specifies that all the generation datasets are to be uncataloged when the

maximum is reached and another generation dataset is to be cataloged. NOEMPTY (the

default) specifies that only the oldest generation dataset is to be uncataloged when the

maximum is reached.

http://www.jaymoseley.com/hercules/vstutor/defpath.htm
http://www.jaymoseley.com/hercules/vstutor/aixprint.htm

SCRATCH specifies that the generation dataset's entry is to be deleted from the Volume

Table Of Contents when the generation dataset is uncataloged. The generation dataset

ceases to exist. NOSCRATCH (the default) specifies that the generation dataset's entry is

not to be removed from the VTOC when the

generation dataset is uncataloged.

Model DSCB

When generation datasets are created, the DCB information for the new dataset must

come from a model dataset. The model dataset does not occupy any storage space, but

exists only as a VTOC entry. The model must be on the same volume where the catalog

in which the generation data group is cataloged resides. Since the name for the GDG

base is already in the catalog, the model (which also has the same name) cannot be

cataloged.

An alternative is to have a single model DSCB that is used for all generation datasets

catalogued on a system pack, such as the System Residence. When a new dataset

geneation is created, the model DSCB is specified plus overriding DCB parameters

specific to the particular dataset being created.

Example

The following jobstream defines a Generation Data Group and also creates a model

DSCB which can be used for the creation of the generation datasets.

//DEFGDG JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//MODEL DD DSN=MVS501.ACH.TRANS,DISP=(NEW,KEEP),

// UNIT=3350,VOL=SER=MVS501,SPACE=(TRK,0),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 /* DELETE GENERATION DATA GROUP, IF IT EXISTS

*/

 DELETE MVS501.ACH.TRANS GENERATIONDATAGROUP

 /* DEFINE GENERATION DATA GROUP

*/

 DEFINE GENERATIONDATAGROUP (

-

 NAME(MVS501.ACH.TRANS)

-

 LIMIT(5)

-

 SCRATCH)

 IF LASTCC = 0 THEN

-

 LISTCAT ALL ENTRIES(MVS501.ACH.TRANS)

/*

//

The SYSOUT from this jobstream can be viewed as DEFGDG. Note that the SPACE

specified for the model is (TRK,0), so no space is reserved for the model. For an

example of a generation data group where the LIMIT has been reached, I used the

REPRO command to create a few successive generations of a dataset - GDGCOPY. In

this job, generation #7 was cataloged. From the ASSOCIATIONS under the generation

data group base entry in the catalog, you can see that there are five active generations

being maintained.

Verify VSAM Dataset

If a job terminates abnormally and a VSAM dataset is not closed, the catalog entry for the

dataset is flagged to indicate that the dataset may be corrupt. Before the dataset can be

opened again, the VERIFY command must be used to correctly identify the end of the

dataset and reset the catalog entry.

Model syntax for the VERIFY command:

VERIFY {FILE(ddname[/password]) |

 DATASET(entryname[/password])}

The dataset to be verified may be specified by either FILE, which designates a DD name

for which a DD statement must be provided to identify the dataset, or DATASET, which

designates the name which is used to identify the dataset in the catalog. There is no

CATALOG option for the VERIFY command, so if there is no alias defined for the

catalog in which the dataset can be located, it will be necessary to use either a JOBCAT

or STEPCAT DD statement for the proper catalog.

Example

The following jobstream verifies a VSAM dataset.

//VERIFY JOB 'JAY

MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 VERIFY DATASET(MVS801.STUDENT.FILE)

/*

//

http://www.jaymoseley.com/hercules/vstutor/defgdg.htm
http://www.jaymoseley.com/hercules/vstutor/gdgcopy.htm

The SYSOUT from this jobstream can be viewed as VERIFY.

http://www.jaymoseley.com/hercules/vstutor/verify.htm

