IMPULSE OSB ™ 08/01/11
Ef;LUT'ONS OSB™ Data Access Rel 1.6
TITLE

OSB™ Data Access

AUTHOR

David Crichton, Impulse Solutions Ltd.

CLASSIFICATION

Technical Reference

RELEASE

1.6 — 8™ January 2011

This document is intended to provide a guide to the data access functions
available to users of OSB™ (Tibco Object Service Broker) formerly referred to as
ObjectStar™.

Printed on 08/01/11 Page 1 of 46 Release 1.6

IMPULSE osB ™ 08/01/11
f&LUT'ONS OSB™ Data Access Rel 1.6
1 Contents

1 (O70]] 1T o1 1 PP 2
1.1 Changes from Previous ISSUE ... i 5
1.2 Document Cross ReferenCesS. ... oot e 5
1.3 REVISION HiSTOIY ...t 5
1.4 IMpulse SOIULIONS LEd ... e 6
2 g 1 0T [T {0 o 1 7
2.1 ACKNOWIEAGEMENTS e eaaas 7
2.2 0 1= od = 1 0 1 7
2.3 Intellectual Property RightS. ..o e 7
3 OSB™ Data ACCESS CONCEPES . ettt ittt e r e rans 8
3.1 L@ 1Y 7= Y 1= S 8
3.1.1 OSB™ ArChITECIUN ..o e e eaee e 8
3.1.2 L TSI [] = 1) 0] 9
3.1.3 The TABLES Table.o 9
3.1.4 T =1 0 1< 1] S 9
3.1.5 Y=Y |1 1= 1 = L T o 10
3.1.6 DisStributed ProCeSSINGt 10
3.2 Table DefiNitioNsS e 10
3.2.1 (] /o L= o o T 11
3.2.2 TDS TaAblES .. e i 11
3.2.3 PRM Tables .. e e 11
3.24 BES Tables . 11
3.2.5 SES TabIES i e 12
3.2.6 TEM Tables et 12
3.2.7 Screen and Report TabIeScooiiiiiii e e 12
3.2.8 Legacy Data GateWaYScceuiiei et et e e e e 13
3.2.9 EXternal FIles ... s 13
3.2.10 SUBVI B S . i e eaaaaaaaaan 13

Printed on 08/01/11 Page 2 of 46 Release 1.6

IMPULSE osB ™ 08/01/11
f&LUT'ONS OSB™ Data Access Rel 1.6
3.2.11 CLC Al e 15
3.2.12 MemMOrY Tables e 16
3.2.13 Minimal DefinitioNS ..o e 16
3.2.14] = 16
3.2.15 [T 0= L= 16
3.3 Fields and Parametersooui it et 17
3.3.1 EXternal Tables ... e 17
3.3.2 SCreeN TabIES .. 17
3.3.3 REPOI TablES. . e 17
3.34 Data ASSIgNMENT ... et 18
3.3.5 [T= o I @0 0 F=7 153 =] o oY/ 18
3.3.6 Global Fields ... 19
3.3.7 [0 = = I T 1 T =Y Y/ 19
3.4 Primary and Secondary INAEXES ...t 19
3.4.1 Defining a Secondary INAeXoiiiiiiii it 20
3.4.2 Secondary INdeX StrUCTUIE.oiii et e eeie e eeaaas 20
3.4.3 Secondary Index Management.ooiiiiiiiiii i 20
4 Data Retrieval OpPtiONS......cc.iiiiiii e eaeeas 21
4.1 Data RetrieVal. e, 21
4.1.1] 21
4.1.2 L] N 22
4.1.3 FORALLAYZB Y E ..ot ettt ettt ans 22
4.1.4 @F O R AL A .. 24
4.1.5 @READD SN .. 24
4.1.6 Use Of MAP tables ... e 24
4.2 g o L1 (Yo AN o [/ST [o 25
4.2.1 B L o 18] 1= o 1 25
4.2.2 (O T =0 I Y oo 25
4.2.3 TaDI - DI IVEN ACCESS ... ettt ettt ettt e e nn 25
5 Data Retrieval Processes and OptioNSc.ccvviiiiiiiiiiiii i 26
5.1 WHERE ClalUSES ...ttt ittt ettt et ettt e et e e et e e et e e e e e eaneeeaneanas 26

Printed on 08/01/11

Page 3 of 46

Release 1.6

IMPULSE 0SB ™ 08/01/11
f&LUT'ONS OSB™ Data Access Rel 1.6
5.1.1 Y 1 011 (8 =@ o) o] = 26
51.2 Reverse Polish NOtationooii i e 27
5.1.3 Interpretation of Complex ClauSescoviiiiiiiiiiiiii i eciieeen e, 27
514 Example of Complex Selectionoooooiiiiiiii e 29
5.2 ORDEREDttt e 30
521 1T g X o 30
5.2.2 g g o] [To= 1 [0 o K5 (o] g €1 i 30
5.3 U I 30
54 Performance Implications ... e e e e 30
54.1 Data PerSiSTENCE. ...t 31
5.4.2 Reducing DOB CallS ...t ettt aaneees 31
5.4.3 Y0 T 32
5.4.4 JLIE= 10 L= Y= T o 1 32
6 Data ModIfiCatioN e 34
6.1 I S E R T ettt 34
6.2 0 34
6.3 I 0 35
6.4 @WRITED SN ..ttt ettt ettt e et et e e e e eaaneean 35
6.5 Data UpPate ... e 36
6.5.1 The INteNt LISt ... e e e aas 36
6.5.2 Transaction COMPIETION ... e 36
6.5.3 Explicit Updates - COMMI T et e e 36
6.5.4 RO L LB A CK .. e 37
6.5.5 0 o 4T T 38
6.5.6 ROV Y et 39
6.6 DistribUted Data.........uoiiiii e 39
6.6.1 D NI ON ... e 39
6.6.2 o] o 39
6.6.3 (@] 17157 (= o3 Y S 40
6.7 EVENT RUIES ...t 40
6.7.1 V2= 1 T £ o] o [41

Printed on 08/01/11 Page 4 of 46 Release 1.6

IMPULSE 0SB ™ 08/01/11
f&LUT'ONS OSB™ Data Access Rel 1.6
6.7.2 I T o 1= 41
6.7.3 Change 1dentificationcooiiiiii i e 41
6.7.4 CUITENT ValUBS ..ottt et e raeenaas 41
6.7.5 COMMIT IMPLCAtiONS ... e e raee s 42
6.8 UNTIL... END LOOPS «uutttttette et ettt ettt et e et e e e e e e e aaeeeaneens 42
6.8.1 RepPEtitivVe ProCESSING ..t 42
6.8.2 [0 o Q0 1Y/ =Y g = o = s 11 o 42
7 Coding TECNNIQUES. 44
7.1 Efficient Data Design and ACCESS ...cuiiiiiie i et et eeaa e eeaaaneeeennn 44
7.2 Complexity Vv Inner RUIEs. ... e 44
7.3 Multiple Use of @ Table ... e 44
7.4 I =T 1SF= Ted u o) o I TS T | o L 44
7.5 Shadow Tables. .. e 45
8 L@ T] = PP 46
8.1 B I Y A = 1T 46
8.1.1 Extended Rule Editor Line Commandc.oooiiiiiiiiiiiiiiiiiiiieiieeeaee 46
8.1.2 RUle Set ANAlYSEr ... e 46
8.2 Cross-Reference Auditor EXEENSIONSuiieiiiii i 46
8.3 [DF= = B I Tox 0] o = T 20 PP 46

1.1 Changes from Previous Issue

1.1 Use of MAP tables

1.2 FIELD and PARAMETER Usage
1.3 EES table type added for Rel 5.0
1.4 Explanation of EES usage

1.5 GET WITH MINLOCK

1.6 Rules and Libraries

1.2 Document Cross References

The distributed OSB™ manuals should be used to provide additional data

for many of the topics referred to in this guide.

1.3 Revision History

1.0 6™ Sept 2006

Printed on 08/01/11 Page 5 of 46

Release 1.6

IMPULSE
SOLUTIONS
Ltd

osB ™
OSB™ Data Access

08/01/11
Rel 1.6

1.1
1.2
1.3
1.4
1.5
1.6

3" March 2007
29" June 2007

6" October 2008
13" July 2010
24™ October 2010
8™ January 2011

1.4 Impulse Solutions Ltd

Impulse Solutions Ltd is an ObjectStar Consultancy which has been
developing utilities and add-ons for OSB(ObjectStar)™ for over fifteen
years. It has also provided resource for application development and
maintenance at a number of European and Australian customer sites
and contributed a number of functions to the ObjectStar™ Rel 4.1 IDE
graphical tool.

Printed on 08/01/11 Page 6 of 46

Release 1.6

IMPULSE oSsB ™ 08/01/11

f&LUT'ONS OSB™ Data Access Rel 1.6

2 Introduction

This document is intended to provide a description of the concepts of
data access in OSB™ and the various functions and tools available to
users of the product. It assumes little or no knowledge of the processes
described but is intended both for new users and also for those with
greater experience of the product.

2.1 Acknowledgements

My thanks to Andy Hampshire of Tibco Software Inc for reviewing the
draft of this guide and offering some very useful advice and the
occasional correction. Thanks also to Dave Clark and Ron MacRae in the
Tibco OSB™ Support team for equally helpful input on performance and
DOB behaviour.

2.2 Disclaimer

The views expressed in this document are those of the author and do
not necessarily represent the official views of Tibco Software Inc.

2.3 Intellectual Property Rights

Tools described in this document which are additional to the distributed
functionality have been designed and developed by Impulse Solutions
Ltd who retains the intellectual property rights to the techniques and
specific implementation.

Printed on 08/01/11 Page 7 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

3 OSB™ Data Access Concepts

3.1 Overview

Data access in most programming languages and database systems
requires definitions to be declared in each program or code section
where data access takes place.

OSB™ adopts a different approach by defining the characteristics of a
data source once and assigning a unique identifier to the definition. All
access to that data source in any piece of code then simply requires a
reference to that identifier.

There are many benefits to be gained from this approach. First, the
existence of a single definition ensures that all references to a data
source refer to exactly the same thing. Secondly, the physical source of
the data may be changed by amending this common definition. This
allows, for example, testing and development of code to use limited
internal test data with the production version switched to an external
legacy data base without any change to the code. In addition, the ability
to use indirect references as described later in this guide allows
individual users and user groups in an application to reference
alternative data sources through common code.

In addition, in OSB™ everything is treated as data including code
(referred to as Business Rules). This gives a unique scalabilty and
portability where a database can be reorganized physically or copied to
another hardware node without change.

3.1.1 OSB™ Architecture

OSB™ uses Client/Server concepts regardless of which platform it is
running on — Z/0S, Windows XP/2000 or Sun Solaris (UNIX). Release
5.2 also runs on Windows Vista or Windows 7.

There are three components required to use OSB™

The Data Object Broker (DOB)
The Execution Engine (EE)
Client Interfaces (Workbench, Batch, API, ODBC)

In any implementation, all may run on the same platform or some may
run on different ones — for example, a mainframe-based implementation
may be accessed by the ObjectStar™ IDE or the OSB™ Ul running on a
Windows XP platform.

This guide relates to the Data Object Broker component only.

Information about the other components and their relationship can be
found in the distributed OSB™ manuals.

Printed on 08/01/11 Page 8 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

An installation may — and usually does — have more than one DOB.
There will be a Production version and at least one for Development.
There may be other versions for User Test, Education etc as required.

Each version is identified by a uniqgue Node name which is installation-
defined and is used primarily to determine the Client/EE/DOB linkages in
use. It is also used when Distributed Processing is implemented which
allows a Client to access data in more than one DOB at the same time.
Reference is made later in this guide to the benefits and other
implications of this feature which uses TCP/IP links to provide the
required connections.

Each DOB can have up to 256 Segments each of which can be held on
from 1 to 128 physical Page datasets. A DOB will have at least 3
segments — Segment O otherwise know as the MetaStor and Segment 1
which holds user-defined data. There is also a Secure Access Log
segment (default Segment 99) which holds unmodifiable security
logging data.

3.1.2 The MetaStor

Segment O holds the system-related data tables, including data
definitions, screen and report definitions and the code library tables. The
unique features of OSB™ including the method of holding code (or
Business Rules) give the product is portability and scalability benefits.

3.1.3 The TABLES Table

The TABLES table is the anchor point of the complete OSB™
implementation. It is the only data table which is not a child object of
another table. All other defined tables are included in the TABLES table.
Note that the TABLES table does not follow the same behaviour as
other tables and should not be modified except by the Table Definers.

A table is identified by a set of values in the TABLES entry, the most
important of which are the Name which is a 1-16 character identifier and
a 3-character TYPE value which defines the class of table and by doing
so determines the other tables which contain components of the table
definition. For example, all tables (with special exceptions for SCR
(Screen) and RPT (Report) tables) have at least one FIELD entry to
define the data fields in each row (record) of the table.

3.1.4 Parameters

All types of table can be unparameterised — that is, there is only one
occurrence of the data. Most types can also have from 1 to 4 data
parameters which implement a multi-dimensional array of occurrences
of a table, each identified by a set of parameter values. This allows
logical separation of data within a table.

Printed on 08/01/11 Page 9 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

A further LOCATION parameter can be defined to support Distributed
Processing. Data from a specific Node is accessed by setting this
additional parameter (which can be the only parameter for a table) in
referencing code. If this value is omitted the default is the current Node.

Parameters have both a physical and logical effect. Each occurrence is
stored in a separate set of database pages so that the minimum space
requirement is one 4kb page. This should be considered when designing
parameterised tables since if they consist of a large number of
occurrences with few rows in each the storage required will be
significantly more than that required for an unparameterised table with
the same total number of rows. The logical implication is that locking
occurs at occurrence level so that different occurrences of the same
table can be processed at the same time without lock interference.

There is a further type of parameter which occurs when a SUBview is
created which has more parameters than the source as described in the
later section on Table Types. This type of virtual partitioned data does
not have a matching PRM table so the occurrences cannot be displayed
as for a normal parameterised table. Impulse Solutions Ltd have
developed a Parameterised Data Browser which can generate and
display the derived occurrences for a parameterised SUBview; this is
available as part of the ISL Tool Kit.

3.1.5 Segmentation

Permanent user data held internally (TDS or Table Data Store) is
assigned to a data segment from 1 to 255 depending on the segments
defined for a specific Node. By default the segment assigned is the
default segment in the user parameters for the person who creates the
definition. Definitions for tables which contain no data may be assigned
to a new segment if required; those containing data require a more
complex process.

3.1.6 Distributed Processing

Where Distributed Processing is implemented code may access data in
the same table on different Nodes by means of the LOCATION
parameter. Note that when a table exists in more than one node it can
be of different types in the different nodes — e.g. TDS on one and DB2
on another. Although the data type and source may differ between
Nodes it is essential to ensure that the Field and Parameter definitions
are the same to prevent code failures or incorrect results occurring. The
use of Minimal Definitions as described later can assist in assuring
consistency when a single physical table is to be made available on a
number of different nodes.

3.2 Table Definitions

Printed on 08/01/11 Page 10 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

Each table accessible by a DOB requires a Table Definition. The Table
Definer tool allows authorised users to specify the characteristics of the
table, including the type, the fields, any parameters, and optional data
such as ordering, default values and required field indicators.

3.2.1 Ordering

All data is held in the order of its key fields in ascending sequence and
by default processed in the same order. Individual fields in the table
definition can defined as having ascending or descending sequence so
that the data is retrieved in that order automatically. For example, a
SUBview can be set with the data presented in a different order from
the base table. Note that specifying any Order value will mean that the
data is ALWAYS sorted during retrieval unless one of the following is
true:

e The code specifies ordering of the data so that it is returned to
ascending key sequence

e The first primary key is specified as Descending order when the
data will be retrieved in descending primary key sequence
without any sorting required.

3.2.2 TDS Tables

Permanent data internal to the MetaStor is defined as Table Data Store
or TDS data. An alternative permanent data type known as Hash Data
Store data (or HDS) is no longer valid.

3.2.3 PRM Tables

If a table other than Screen and Report types has data parameters the
corresponding PRM table allows the current occurrences to be browsed.
Although it is not required to have a PRM table it is strongly advised to
create one as there are a number of functions that cannot be carried out
on parameterised data where no PRM tables exists. More than one PRM
can be defined for a parameterised table but this is not recommended
except in special circumstances related to security. One reason for this
is if the parameters of a table are changed and in particular if data
parameters are added or deleted then the corresponding PRM(s) MUST
be rebuilt or data access failures may occur. It is sufficient to open the
PRM definition in the Table Definer and then save it with PF3 to achieve
this result.

3.2.4 EES Tables

An EES (Execution Environment Session) table has been added to the
product at Rel 5.0 and is used to hold data that persists for the duration
of an Execution Environment session. This allows data to be shared
between sessions running in the same Execution Environment and may
be considered as an intermediate state between ephemeral data such as
SES or TEM tables and permanent data such as TDS. EES tables will

Printed on 08/01/11 Page 11 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

usually be populated in a control task or by shared/sharing tasks which
test for the existence of data and populate on first access.

An EES table always includes 2 fields which are added automatically by
the table definer and must be present. These are both QB4 and named
@@UPDATE_COUNT and @@REF_COUNT. Both are set to 1 when a
row is inserted.

@@UPDATE_COUNT is incremented by 1 each time a row is replaced.
Because an EES will usually be shared by a number of users the buffer
value is compared to the database value when attempting to replace
and if the values differ a LOCKFAIL condition is raised. The row must
then be read again to gain control. This mechanism allows effective
synchronization in multi-user situations and in particular for online
transactions where more than one user may access and update an
individual transaction and an EES table is used to manage this.
However, it must be remembered that EES data is shared ONLY by
users of the same EE and therefore its use depends on the operational
architecture.

The @Q@REF_COUNT field is updated each time the row is read and
provides a mechanism to monitor data usage.

3.25 SES Tables

A SESsion table is used to hold data that persists for the duration of a
session — either a batch job or a workbench activation. SES tables need
to be cleared if they are to be reused in a code loop. This type of table
provides a simple mechanism for passing data into an update
transaction in multiple row format. Note that SES tables cannot have a
LOCATION parameter and are only available in the node in which they
are populated.

3.2.6 TEM Tables

A TEMporary table holds data that persists only for the duration of a
transaction. This type of table is intended to be used as a working area
where data of one or more rows is being manipulated and used. Unlike
SES tables, TEM tables can have a LOCATION parameter and be
shared between different nodes in a distributed system.

3.2.7 Screen and Report Tables

SCReen and RPT (Report) tables are used to populate the defined areas
in 3270-format Screens and Reports respectively. They have a single
parameter which is the name of the Screen or Report to which they are
currently associated. A Screen or Report table can be associated with
many Screens or Reports as determined by the structure of the parent
object as specified in the relevant definer tool.

Printed on 08/01/11 Page 12 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

3.2.8 Legacy Data Gateways

OSB™ has a virtually unique ability to access Legacy Data sources
directly through a series of software Gateways. This allows data in
various external databases to be mapped by the Table Definer in exactly
the same way as an internal table, with the addition of a cross-mapping
feature which establishes the relationship between the fields of the
external database and the internal OSB™ mapping. Data can then be
both read from and updated in the external databases directly. The
automatic checkpoint/recovery mechanism applies as for TDS tables
with the proviso that the data update protocols of the external database
also apply. This means that Legacy Data can be maintained without
knowledge of the coding techniques specific to those databases.

The supported external databases (with their Table TYPE values) are

e ADA Adabas

e DAT CA Datacom
e DB2 DB2

e IDM IDMS

e IMS IMS/DB

[)

204 Model 204

There is also a Gateway for ODBC and Oracle data (TYPE is SLK).
Details of this can be found in the relevant OSB™ manual.

3281 Fail Safe Processing

An option exists in defining Legacy Gateways to ensure that when both
TDS and Legacy data are updated in the same OSB™ transaction both
internal and external data is successfully updated for the transaction to
succeed. This process is described in the various OSB™ Legacy Gateway
guides and the actual requirements depend on the Legacy Data type.
However, the effect in each case is to cause the transaction to roll back
and discard the current intent list if the external data update does not
complete. An option exists to retry the external update when no
completion signal is returned from the external Gateway and the
transaction is placed in ‘In Doubt’ status.

3.2.9 External Files

OSB™ supports external flat files in all environments and also
mainframe VSAM data. The IMP and EXP files allows data from other
sources to be read into OSB™ or data to be passed to external
applications in tabular or delimited format.

e IMP Import files — inward flat file data
e EXP Export files — outbound flat file data
e VSM VSAM data

3.2.10 SUBviews

Printed on 08/01/11 Page 13 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

A SUBview is an alternate representation of a TDS, VSAM or Gateway
table used to provide a number of additional features and usages.

e Where another record is required from a table during a
FORALL loop or when a second occurrence of a parameterised
table needs to be accessed within the loop, the original table
definition cannot be used again. An additional view of the data
is needed which is obtained by creating a ‘mirror’ SUBview.
When Table TYPE of SUB is specified in the Table Definer and
the original table is used as the source table name, the
parameters and fields of the source are copied with ‘empty’
definitions. The actual values are retrieved at runtime from the
source table. Any number of such ‘mirror’ SUBviews can be
defined if further data retrieval from the source is required in
this way.

e Where it is required to provide access only to a subset of the
fields in a table then a partial SUBview can be defined as
above but with fields removed that are not to be available.
These CANNOT include the parameter and key fields which
must be present.

e Where fields of the source table are to be used but in a
different format and with a different nhame. For example, a
date field in Julian format (YYDDD) can be defined as a DB
Date field.

e Where additional fields are to be included in the SUBview
populated at runtime by process rules using either data from
the table or external values. These fields can NOT be used for
data selection or ordering as they are ephemeral. See the later
section on Event Rules for tools which can be used by generic
Derived Field Rules to determine the table or occurrence which
has invoked the rule.

e Parameterised SUBviews of unparameterised data or
SUBviews with a different number of parameters can be
defined if required. For example, the OSB™ USERID table
which defines valid users (@QUSERSOPTIONS) which is
unparameterised has a parameterised SUBview
(@USERS_OPTIONS) where each individual user has its own
occurrence. This allows locking of data to be partitioned. There
is no standard tool to show the occurrences of a SUBview but
the Extended Data Browser supplied by Impulse Solutions Ltd
has this capability.

e A SUBview may have a selection setting which determines, for
instance, the subset of occurrences of a parameterised table
accessible to the SUBview or a set of filters which pre-
determines the rows which will be selected regardless of any
WHERE clauses in the accessing code.

Printed on 08/01/11 Page 14 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

3.2.10.1 Browse Mode SUBviews

A particular feature of SUBviews is the ability to specify that it runs in
Browse mode. This means that no locks are taken on the data but it also
means that no updates can be made. This is a very useful feature in
application design which allows any TDS table for which a Browse
SUBVvView has been defined to be used within an update transaction with
out the locking overhead when the data within it is effectively static at
that point in time. Such SUBviews normally contain all the fields of the
parent table with no additional defined fields. It is strongly
recommended that ALL application TDS tables have a Browse SUBview
defined and maintained for this purpose. Care must be taken to reflect
any changes to the parent table in the corresponding SUBview.

3.2.11 CLC Tables

Calculation Tables provide a simple and effective way of obtaining
counts of data within a table or occurrence. When a CLC table is defined
the fields are those of the source table plus a final COUNT field. Note
that the source table cannot already have a COUNT field if this is to be
part of the summary. Fields not required in the summary process are
deleted — this can include key fields — and the remainder saved.
Browsing the CLC table will now give a rollup count for the selected
fields.

32111 COUNTOCCURRENCES
CLC tables are of use where a single occurrence count is required from
a table. However, if different summaries are required from the same
source table a number of different CLC tables would be required, all of
which would have to be managed as part of any update process.

An alternative is to use the COUNTOCCURRENCES builtin function for
the different summaries required. This has the format

result = COUNTOCCURRENCES((table, selection)

where
result is the number of rows meeting the selection criteria
table is the name of the table to be searched
selection is the set of field names and values to be used, and the
parameters required if the table is parameterised. This argument is a
string which can be in C, V or UN format.

The string must consist of a set of

field/parameter = value

Printed on 08/01/11 Page 15 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

specifications separated by &.

Note that use of fields that are not either the first primary key or
secondary indexes will result in a table sweep which may take some
time to complete.

3.2.12 Memory Tables

There are three types of memory tables used in OSB™. Two of these,
MEM and MSG are used for internal processing only and are outside the
scope of this document but the third is used for communication between
OSB™ code and external processes in either direction.

This is the MAP (Memory Storage Mapping) type. As the name
suggests, it maps an area of memory which will be accessed by the
external process either to insert data or retrieve it. A MAP table has a
single (other than LOCATION) parameter named ADDRESS which is a
4-byte binary value. MAP data is accessed by setting this parameter to
the value of the physical location at which the mapped area starts in
memory.

3.2.13 Minimal Definitions

A Minimal Definition is used when data exists ONLY on a node or nodes
other than the current one. It consists of the NAME and TYPE fields and
a LOCATION parameter only. The rest of the definition must exist in full
on the target node. Minimal definitions are used only in configured
distributed systems.

3.2.14 Rules

OSB™ code, known as Business Rules, is held in tables in the metastor
as data. Rules are stored in executable object form in the RULEBODY
field of the @RULESLIBRARY table which is the only table of type OBJ.
This field is 2198 bytes in length thus restricting the maximum size for
an individual rule. Full details of rule maintenance are given in the
Processing manual but it is important to explain that there is no source
code as such so that this table is the sole repository for code. The Rule
Editor converts input statements to object code when a rule is saved
and detranslates it when an existing rule is re-edited.

3.2.15 Libraries

OSB™ supports multiple code libraries. There are two defined with the
distributed system, both of which are bound. One, the COMMON
library, contains rules distributed with the package which are used by
system functions or available for inclusion in user code and the SITE
library which is initially empty but used to hold production copies of user
rules. All libraries are defined in the @LIBRARIES table.

Printed on 08/01/11 Page 16 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

3.3 Fields and Parameters

A Table definition must contain at least one Field definition to describe
the row structure of the corresponding Table (two exceptions are for
Screen and Report tables as described Ilater). If the table is
parameterised up to 4 data Parameters can be defined as well as a
single Location parameter used for Distributed Processing and described
later. An unparameterised table may also have a Location parameter.
However, not all Table Types allow Location Parameters or in some
cases any Parameters. The system table TABLE_FORMATS defines the
allowed characteristics for each table type.

Field definitions are held in the FIELDS table and Parameter definitions
in the PARMS table both of which have a single parameter which is the
name of the table to which they refer.

The Field definition defines the characteristics and relative position of an
element of the row in terms of Type, Syntax and Length. Most Field
Types are of fixed format so that a specific length of storage is required
regardless of whether the data requires it; the main exception is for
Variable Character fields which are stored with a length prefix and the
actual number of characters entered with trailing blanks removed.

Parameters are defined in the same way but have a CLASS attribute
which is set to D except for the LOCATION parameter which is CLASS L.
LOCATION parameters are always Type |, Syntax C and Length 16.

3.3.1 External Tables

External tables (e.g. IMPort, EXPort and Legacy Servers) have a
corresponding set of external specifications for each Field in order to
allow data to be read or written in the correct formats. The Table
Definer for each requires the user to specify the external characteristics
appropriate to the specific table type.

3.3.2 Screen Tables

A Screen is defined by a set of Screen Tables which have specific start
and end columns and a start row. They are defined in the occurrence of
the SCREENTABLES table for the Screen and either have a specific
number of rows or are scrollable. An occurrence of the SCREENFIELDS
table parameterised by the name of the corresponding Screen Table
defines the position by row and column and the length of each data field
and literal within the Screen Table relative to the start co-ordinates of
the Screen Table. Where Screen Tables contain data fields, these are
specified in the occurrence of FIELDS for that Screen Table. However, a
Screen Table may only contain literals and will therefore have no
FIELDS occurrence. This is one of the exceptions referred to previously.

3.3.3 Report Tables

Printed on 08/01/11 Page 17 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

A Report is defined in a similar way by a set of Report Tables held in the
occurrence of the @REPORTTABLES table for the Report. The elements
of each Report Table are defined in the occurrence of @REPORTFIELDS
for the Report Table in a similar way to Screen definitions. Again, if a
Report Table contains only literals then no FIELDS occurrence exists.
This the other exception referred to earlier.

3.3.4 Data Assignment

When data is to be written to a table occurrence a data buffer must first
be populated to set values for all key field and any non-key fields where
the REQUIRED attribute is set to Y. There are 3 basic options available
to do this:

e Absolute value e.g. tablea.fielda = value
e Value returned by a function e.g. tablea.fielda = function
¢ Field assignment e.g. tablea.fielda = tableb.fieldb

OSB™ provides a convenient option for an extended Field Assignment
(Assignment By Name) which has the form

tablea.* = tableb.*

This results in the values of all fields in the current data buffer for tableb
which are also defined in tablea being copied to the data buffer for
tablea. This allows changes to be made to the definitions of either table
without any change in code.

3.3.5 Field Consistency

There is no automatic mechanism to prevent the same field name being
used in different tables with different characteristics but there is a
severe risk associated with this. If a specific or extended assignment is
used between two tables where the field names are common but differ
in definition the assignment may fail or generate unexpected results for
one of the following reasons:

e Type and/or Syntax differs and is inconsistent — this will cause
the rule to fail

e Type and Syntax are identical or compatible but the length of the
target field is less than the source — if the source value exceeds
the maximum value of the target the rule will fail

e The source is a Variable Character field and the target Fixed
Character — any lower-case characters will be converted to upper
case

It is strongly recommended that a consistent approach is made to the
use of specific field names to avoid these problems occurring. If it is
required to have a target field with different characteristics from the
source then a different field name should be used.

Printed on 08/01/11 Page 18 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

3.3.6 Global Fields

OSB™ provides a facility to assist with maintaining field consistency by
use of the Global Field table (@GLOBALFIELDS) which holds a unique
definition of a field including a Business Description and also a Display
Length for use in Screens or Reports. When a table is defined, the
Global Field table can be accessed and all required fields selected from
it. This guarantees that consistent usage will be preserved. In addition,
a system control table is provided which allows an installation to specify
the degree of enforcement of these stadards which is to apply.

However, this facility is not used widely, mainly because it depends on
an effective DBA role with authority to manage the process. In addition,
changes to the Global Fields table may require a review of all existing
table definitions and this may be impracticable in the absence of
resource.

3.3.7 Data Dictionary

In order to assist in managing an effective level of field consistency, ISL
provide a Data Dictionary tool which build and maintains a cross-
reference of Field to Table usage, flagging those fields where
inconsistent usage had been detected and allowing the details of usage
for a specific field to be shown.

3.4 Primary and Secondary Indexes

TDS and most other tables must have at least one Primary Index field
(which must be the first field in the definition) and can have up to 16.
The total length of the key fields must not exceed 127 bytes. Each data
row must have a different combination of values for these fields.
Primary Keys are identified in the Table Definer by setting a KEYTYPE
of P. Primary fields must be contiguous — that is, if there are, for
example, 5 these must be fields 1 to 5.

When data is stored it is indexed by the first key field which allows rapid
retrieval of rows when this field is used in the retrieval selection. The
importance of this in optimising performance is described in the later
section on Performance Implications.

OSB™ also supports Secondary Indexes which can be defined on any
field other than the first, including other Primary Keys. Secondary keys
are identified in the Table Definer by a KEYTYPE of S or Q if they are
also Primary Keys. Up to 16 Secondary Indexes can be defined for a
table. Note that if a Secondary Index is specified for a numeric field it
cannot contain null values.

Secondary Indexes are used by the DOB in data retrieval as an

alternative to scanning a whole table. The conditions when this occurs
depend on the precise situation involved in the retrieval selection.

Printed on 08/01/11 Page 19 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

3.4.1 Defining a Secondary Index

Secondary Indexes cannot be defined directly from the Table Definer.
They can be defined or removed by a feature available to Level 7 Users
only.

If a table is empty and Secondary Indexes are defined, they will be
populated automatically as each row is inserted, replaced or deleted. If
the table already contains data, or if additional Secondary Indexes are
to be added to a populated table then they can be populated for existing
rows either by running the SIXBUILD tool from a Level 7 session if the
data is less than a specified size or by running the HRNBRSIX batch
utility with the segment containing the table offline. The advantage of
the batch utility is that it can build multiple Secondary Indexes in one
pass; if this is done, the KEYTYPE values are added to the table
manually afterwards by editing the FIELDS table for the table to be
updated.

If a Secondary Index build fails (for example, if a null value is detected
in a numeric field), the KEYTYPE value in the table definition changes
from S or Q to s or g. If this is detected, the error cause should be
corrected and the index data then be rebuilt with the batch utility
described above.

3.4.2 Secondary Index Structure

A Secondary Index entry consists of the Secondary Key value, the
Primary Key value and the page number of the data page containing the
row to which it refers. This allows direct access to the corresponding row
or rows by reference to a Secondary Index value.

3.4.3 Secondary Index Management

When Secondary Index data is updated by adding rows, deleting rows or
modifying an existing row the stored Index data is modified accordingly.
Under certain circumstances, the page number value cannot be
updated. When this happens, subsequent accesses use the Primary Key
value as the route to accessing the required row. Over a period of time,
this can lead to the efficiency of retrieval diminishing.

If this happens, the Secondary Index so affected should be rebuilt as
described above.

Printed on 08/01/11 Page 20 of 46 Release 1.6

Ltd

IMPULSE OSB ™ 08/01/11
SOLUTIONS OSB™ Data Access Rel 1.6

4 Data Retrieval Options

4.1 Data Retrieval

Since each data occurrence is identified uniquely by a specific table
name and a parameter specification if it is parameterised, data retrieval
in OSB™ is extremely simple.

There are two basic verbs — one to retrieve a single row and one to
process a complete table or selection of rows. Both refer to the table
name or a specific occurrence without any further data declarations
being required in the actual code.

This allows considerable flexibility in data management as the actual
source for a code process can be changed simply by modifying the data
type and details of the table definition used. In addition, the ability to
use an indirect reference as the table name allows generic data-driven
processing to be developed very easily.

411 GET

4111

The basic format is

GET tablename
which will retrieve the row with the lowest key set (unless the definition
specifies ordering). The actual row to be retrieved may be determined
by qualifying the GET with WHERE clauses as described in the next
section of this guide. Note that for a parameterised table the format is

GET tablename(pl,..)

If the table is empty or no row matches the selection criteria a GETFAIL
exception is raised which may be trapped by either the generic

ON GETFAIL:
or the specific
ON GETFAIL tablename:

as well as any parent exception in the defined standard hierarchy.

GET after INSERT DELETE or REPLACE

Because of the way that OSB™ processes updates to permanent data —
in particular TDS — special consideration needs to be given when a row
that has been inserted or replaced within the SAME transaction is to be
retrieved (see also the section on the COMMIT verb later).

Printed on 08/01/11 Page 21 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

The new or modified row is at that point held in the Intent List and has
not been written to the physical table. If a GET is issued with ALL
primary key values specified in a WHERE clause the row in the Intent
List is retrieved. If ANY key field value is omitted from the statement an
attempt will be made to retrieve the row from the actual physical source
instead. This can result in unexpected GETFAILs or field values in the
data buffer which do not reflect recent changes. Equally, if a row has
been deleted but not committed a non-unique GET may retrieve the
deleted row.

4112 GET WITH MINLOCK

A new option has been added at Release 5.2 to limit the scope of locking
when the selection is not unique by primary key. The Processing
manual contains the following description:

If a GET statement specifies a row that is unique by primary key, then a
share lock is taken upon that row. If a GET is not unique by primary
key, then a share lock is taken on the table (or table instance in the
case of a parameterized table). If the keywords WITH MINLOCK appear
at the end of a GET statement, and either the GET is ordered by
anything but the primary key, or the GET includes selection that is not
unique by primary key, then a share lock will be taken on the table (or
table instance in the case of a parameterized table) only during GET
processing. Once the row to be returned has been determined, the lock
will be reduced to a share lock on only that table row.

4.1.2 FORALL
The basic format is

FORALL tablename.....
code
code

END;

which will retrieve all rows in the table (or occurrence as described for
GET) and execute the code placed before the terminating END
statement.

If no data exists (or meets any selection criteria) the included code is
not executed at all and processing continues with the next selected
statement following the END.

FORALL can be qualified with WHERE clauses as for GET, the order or
retrieval modified by ORDERED statements and early termination

specified by UNTIL statements, all of which are described in the next
section.

4.1.3 FORALLA/B/E

Printed on 08/01/11 Page 22 of 46 Release 1.6

Ltd

IMPULSE OSB ™ 08/01/11
SOLUTIONS OSB™ Data Access Rel 1.6

4131

4132

Data-driven processing may require that the specification of a data
retrieval has to be constructed dependent on the actual run-time
conditions. It is impracticable and inefficient to try to code explicitly all
possible optional GET or FORALL statements in such a situation.

OSB™ provides a generic retrieval option which allows the user to build
the required information dynamically and then retrieve either a single
row or a set of rows to match the required specification.

There are 3 functions provided to do this.

FORALLA((tablename,parmspec,wherespec,orderspec)

retrieves the first row matching the specified arguments or if none
exists raises the ENDFILE exception.

Further rows can then be retrieved if multiple rows are required by
coding

UNTIL ENDFILE:
CALL FORALLB(tablename);
code
code

END;
Once all required rows have been retrieved the table is closed by calling
FORALLE(tablename);

This statement should follow a FORALLB loop and also be present in
any ON ENDFILE: block.

TAM Parameters

The parameters for FORALLA can be constructed manually if required.
They use a form of Reverse Polish Notation as described later in this
guide. A null parameter indicates that no qualification for that part of
the selection is required.

Note that if invalid parameters are passed to FORALLA an untrappable
fatal error will occur.

PARSE_TAM

A simpler way to build the TAM parameters is use the
PARSE_TAM(tablespec)

tool. This populates the fields of the TAM table buffer with the required
values which can then be used directly in the call

Printed on 08/01/11 Page 23 of 46 Release 1.6

Ltd

IMPULSE OSB ™ 08/01/11
SOLUTIONS OSB™ Data Access Rel 1.6

FORALLA(TAM.TNAME, TAM.PSTR,TAM.WSTR,TAM.OSTR);

If an invalid tablespec value is used the PARSER_ERROR exception is
raised.

The tablespec string can be built by concatenating literals and
field/parameter values together to build the required result. Remember
that field and parameter values or the table name which are themselves
character strings must be enquoted either by including pairs of single
quotes in the string or by using the QUOTE tool. An example could be

S = name || ‘WHERE KEY = * || QUOTE(keyval) || * & SEL = * |];
selval
CALL PARSE_TAM(S);

414 @FORALLA

This is a version of FORALLA introduced with Unicode support for
situations where any table parameter or selection criterion is 100
characters or greater. Note that an error in the parameters will cause a
fatal error as for FORALLA.

415 @READDSN

The @READDSN tool is used to retrieve a row from an external file as a
character string. This must then be deconstructed by the user as
required. Note that the default behaviour of this tool differs for
Windows and Solaris access from that on a mainframe node. This is
because it is used within the Promotion system and therefore always
accesses data in EBCDIC format and cannot therefore read Windows
text files directly.

The file from which the record or records are read is specified by a
preceding @OPENDSN call.

4.1.6 Use of MAP tables

MAP tables provide a simple method of processing data read from
IMPort files or by @READDSN which contains more than one record
format.

Define a series of MAP tables where one has a KEY field and either a
single data field large enough to hold the input records or two or three
fields to define the record identifier and the remaining data; the non-
identifier fields should have SYNTAX of V. Then define one MAP table
for each possible record format specifying the required fields as offsets
into the record buffer.

At the start of the processing code, get the memory address to use by
retrieving or initialising the SESSION occurrence of @MAP with SIZE

Printed on 08/01/11 Page 24 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

set to the required buffer value. This will provide the ADDRESS value to
use as the key for storing and retrieving each input row.

Process the input row by row, storing the data in the base MAP table by
use of INSERT. Extract the data from this buffer which identifies the
record type and then use this value to GET the data in the appropriate
format using the memory address obtained above.

4.2 Indirect Addressing

As noted earlier, the argument for a GET or FORALL can be an indirect
reference. This allows the actual table to be processed to be determined
by code checks or by control data values. This is of particular
importance in that it allows applications to be designed where each user
or group of users can have their own set of data tables but access them
with common code.

4.2.1 Rule Arguments

The name of the required table can be passed as a rule argument. If this
form is used the GET or FORALL uses a simple value as it does for a
specific table name except that it is a parameter and not a literal. This
form cannot be used to access data with a simple value defined as a
variable value within the rule which is calling the GET or FORALL.

4.2.2 Coded Access

An alternative is to assign the required table name to a 16-character
Identifier field in a table buffer. Any table which is not currently in use
can be used for this purpose as no modification takes place to the data
in that table. The TABLES table itself is often used for this purpose — for
example:

TABLES.NAME = *XYZ’;
GET TABLES.NAME;

This usage, like the rule argument usage above, means that an explicit
GETFAIL condition (ON GETFAIL tablename) cannot be used to trap
unsatisfied calls; the generic ON GETFAIL must be used and if any
possibility of multiple use exists the actual table causing the failure must
be identified by code — for example, by setting a variable before the call
and testing it in the exception.

4.2.3 Table-Driven Access

This is variation of the above usage where the required table value is
taken from a field of a control or reference table which itself has been
retrieved. The technique mentioned earlier of providing alternate data
sources for different users depends on this type of process.

Printed on 08/01/11 Page 25 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

5 Data Retrieval Processes and Options

An unqualified GET will retrieve the first row in the selected table which
has the lowest key values or the first row determined by any ORDER
values. An unqualified FORALL will retrieve all rows in the selected
table in the same order.

Both verbs can be qualified by a WHERE clause which determines one
or more sets of field evaluations which determine which rows in the
selection process meet a particular set of criteria. The order in which the
retrieved rows are returned to the user can be modified by use of the
ORDERED clause. For a FORALL loop early termination can be made by
using the UNTIL clause to determine one or more termination
conditions.

5.1 WHERE Clauses
5.1.1 Structure Options

5111

5112

A WHERE clause consists of one or more sets of evaluations consisting
of a field or parameter name, a logical comparison and a value. If more
than one set exists they can be separated by & (AND) operators which
requires all of the conditions to be met or | (OR) operators which define
alternate sets of conditions any one of which will satisfy the selection. A
combination of these operators can be used. The LIKE comparison can
be negated by preceding the field or parameter name with a ™ (NOT)
operator. Evaluation sets can also be grouped into subsets by enclosing
in parentheses ((and)) . Such groups can themselves contain further
groups and can also be negated by a preceding /™ operator.

Operators

The allowed operators are

= equal to

N= not equal to

> greater than

< less than

>= greater than or equal to
<= less than or equal to

LIKE character ‘wild card’ match

Values

The format of the value in an expression depends on the characteristics
of the field to which it is compared. Values can be unquoted numerics,
quoted strings (including those containing ‘wild cards’ (* or ?) for LIKE
expressions), a variable or rule argument value, a table.field value or a
reference to another field in the table being processed in the format
* field.

Printed on 08/01/11 Page 26 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

51.1.3 Basic Selection

The simplest form of WHERE consists of a single evaluation expression.
This will either for a GET retrieve the first row that meets the selection
criterion or for a FORALL will return all rows meeting it. This format
creates a single test set which is either satisfied or not.

A simple test can also consist of a number of evaluation expressions
separated by &. This will either for a GET retrieve the first row that
meets all the selection criteria or for a FORALL will return all rows
meeting them. This format also creates a single test set which is either
satisfied or not.

A simple multiple-choice selection consists of a number of evaluation
expressions separated by an | operator but without any & operators or
parentheses. Each expression is treated as an alternate test so that a
GET statement will return the first row that meets ANY of them while a
FORALL will return all rows that meet any (or more than one). The
clause is translated into a number of test sets, one for each expression.

More complex selection clauses require an understanding of how they
are interpreted and executed as described in the following sections.

5.1.2 Reverse Polish Notation

Reverse Polish Notation is a method of representing algebraic
statements in a form which can be easily interpreted by a mechanical
device such as a computer. It was devised by the Australian
mathematician Charles Hamblin in the 1950’s. An excellent description
of this process and other topics can be found in the online Wikipedia at
http://en.wikipedia.org/wiki/Reverse_Polish_Notation.

An example of this notation is the expression 3 + (4 * 7) which is
entered in RPN as 34 7 * +. OSB™ uses a form of RPN both to interpret
WHERE clauses and also in the generated TAM strings used by the
FORALLA tool.

5.1.3 Interpretation of Complex Clauses

A conditional clause which contains & and | operators but with no
parentheses is interpreted as follows:

1. Process the expressions from left to right in order.

2. When an | operator is encountered start a new test set.

3. When an & operator is encountered add the following expression
to ALL existing test sets.

An example of this is

WHERE field1l = valuel & field2 = value2 | fieldl = value3 & field3 >
value4

Printed on 08/01/11 Page 27 of 46 Release 1.6

http://en.wikipedia.org/wiki/Reverse_Polish_Notation

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

would result in the following 2 test sets:
fieldl = valuel & field2 = value2 & field3 > value4
fieldl = value3 & field3 = value4

Note that each test set contains a set of expressions connected by & -
i.e. all must be satisfied for the set to be triggered.

5131 Parentheses

Pairs of parentheses ((and)) are used to group expressions which are
considered as a single compound expression so that their result
becomes an effective expression in each set to which they are assigned.
The rule editor will automatically remove any pairs which are redundant
or add them if required (see later). If the set of expressions within the
parentheses contains ONLY & operators and no nested parentheses in
turn, the parentheses are redundant as all the expressions will be added
to existing sets as in the previous simple example. If, however, the set
contains one or more | operators then a multiple set of sub-expressions
is generated which are added in turn to existing sets to create multiple
occurrences. For example:

WHERE field1l = valuel & (field2 = value2 | field3 = value3)
results in 2 test sets

fieldl = valuel & field2 = value2

fieldl = valuel & field3 = value3

Note that if the parentheses had been omitted

WHERE fieldl = valuel & field2 = value2 | field3 = value3
the result would have been the following 2 test sets

fieldl = valuel & field2 = value2

field3 = value3

Parentheses can be nested to any required depth (subject to an overall
limit imposed by the rule executor). Each lower-level group will in turn
operate on all higher-level test sets to qualify them and replicate sets
where appropriate. Great care must be taken when constructing
complex multi-level structures in this way as the result can very easily
be other than that intended. It is strongly recommended that
parentheses should be used at all levels when defining such structures —
the Rule Editor will remove any which are unnecessary.

Printed on 08/01/11 Page 28 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

5132 A (NOT) Operators

The ™ (NOT) operator has two main usages. It can be used to negate a
LIKE operator in a single expression or to negate a complete simple or
complex expression within a set of parentheses. The ~ operator is
ALWAYS followed by a leading parenthesis and will be added by the rule
editor in the first usage where necessary. If the code is

™ fieldl LIKE valuel
it will be shown as the following when the rule is saved and redisplayed
N (fieldl LIKE valuel)

The effect of an ™ operator on a group of expressions depends on the
exact nature of the group structure. In certain cases where the group is
a simple set of expressions separated by | the result is the same as the
expressions without the parentheses but with inverse operators. An
example is:

N (fieldl = valuel | field2 = value2 | field3 ™= value3)
which is the same as

fieldl ~= valuel & field2 <= value2 & field3 = value3

5.1.4 Example of Complex Selection
The following condition

WHERE fieldl LIKE valuel & field2 = value2 & field3 LIKE value3 |
field2 ~= value4 | (field2 = value4 &(field3 LIKE value5 &(field3 LIKE
value3 | field3 LIKE value6) | field3 LIKE value6)) |(field2 = value7
&(field3 LIKE value8 | field3 LIKE value9)) |(field3 LIKE valuelO |
field3 LIKE valuell) & field4 LIKE valuel2 & field5 = valuel3

generates 9 test sets as follows:

1: fieldl LIKE valuel & field2 = value2 & field3 LIKE value3 & field4
LIKE valuel2 & field5 = valuel3

2: field2 ~= value4 & field4 LIKE valuel?2 & field5 = valuel3

3: field2 = value4 & field3 LIKE value5 & field3 LIKE value3 & field4
LIKE valuel2 & field5 = valuel3

4: field2 = value7 & field3 LIKE value8 & field4 LIKE valuel2 & field5
= valuel3

5: field3 LIKE valuel0 & field4 LIKE valuel2 & field5 = valuel3

6: field2 = value4 & field3 LIKE value6 & field4 LIKE valuel2 & field5
= valuel3

7: field2 = value4 & field3 LIKE value5 & field3 LIKE value6 & field4
LIKE valuel2 & field5 = valuel3

8: field2 = value7 & field3 LIKE value9) & field4 LIKE valuel2 & field5
= valuel3

9: field3 LIKE valuell & field4 LIKE valuel2 & field5 = valuel3

Printed on 08/01/11 Page 29 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

If a row satisfies any of the above sets it will be returned to the caller.

5.2 ORDERED

ORDERED [ASCENDING/DESCENDING] fieldname {AND
ORDERED...}

The ORDERED clause determines the search pattern for the result of a
GET statement or the order in which rows are returned for a FORALL. It
allows the default sequence determined by the key order and any Table
Definition Ordered flags to be overridden and the records presented in a
different sequence. The ORDERED clause can contain as many fields
from the table definition as are required specified in the field precedence
order and whether they are to be in ascending or descending order. If
the ORDERED clause refers only to the first primary key in
DESCENDING order then the records will be presented in reverse order
with no sorting and if a table has its primary key defined as Descending
then an ORDERED ASCENDING primary key clause with no other fields
specified will result in the reverse.

5.2.1 Sorting

For all other ORDERED conditions the selected rows will be sorted by
the most appropriate sort option; this will cause a processing overhead
which will depend on the number of records to be sorted and the
installation sort options.

5.2.2 Implications for GET

An ORDERED GET will almost always cause a sort to occur in order to
determine the actual record to be returned from all those meeting any
other selection criteria.

5.3 UNTIL
UNTIL condition [table] {OR condition [table] {OR...}}

The UNTIL clause of a FORALL statement — it is not valid for a GET -
can specify one or more conditions which if met will cause the loop to
terminate before the table end condition which is the default cause. If
any of the specified conditions occur then the loop will exit. The values
may be any exception — standard or user-defined — raised within the
FORALL — END loop which is not trapped explicitly by the included code
(excluding any embedded EXECUTEd sub-transactions). Exceptions
which can be qualified with a specific table name can be coded in either
form.

5.4 Performance Implications

Printed on 08/01/11 Page 30 of 46 Release 1.6

Ltd

IMPULSE OSB ™ 08/01/11
SOLUTIONS OSB™ Data Access Rel 1.6

The simplicity and flexibility of OSB™ can itself become a problem. It is
possible to build good applications faster in OSB™ than in almost any
other language. It is also easy to build bad systems faster...

When designing data access routines there are a number of factors to
consider. These are offered as guidelines as there are often many ways
of approaching the design of a solution which may depend on
installation-specific factors such as naming standards and transaction
design requirements. However, the following are general points to
consider in the light of local needs.

5.4.1 Data Persistence

5411

5412

OSB™ supports both explicit and implicit data persistence. By this, we
mean retention in storage of data which is to be reused so that the
overhead of repeated 1/0 activity is reduced to a minimum.

Binding

OSB™ supports binding of both definitions (which are simply control
data) and data. This means that when a table is accessed either the
definition components or both the definition and the actual data are read
into storage in a system area and retained. Note that data cannot be
bound unless the definition is also bound. This option should be
considered for frequently-used application table definitions and also for
static control data which is frequently used but has relatively few rows.
There is an overall limit to the amount of data that can be bound and
care must be taken in determining priorities so as to obtain the
maximum benefit from its use. It must also be remembered that bound
definitions will remain unchanged to the user even if updated elsewhere.
Bound data should be static — that is, updated only as an explicit
maintenance activity. With these restrictions, significant performance
improvement can be gained by using this option.

Memory Retention

OSB™ also has a transient retention facility in that definitions and data
which have been read into storage can be re-used without further recall
until either modified or overlaid by further data. This means that in
particular circumstances repeated operations appear to speed up as the
fetch overhead is excluded from the later invocations. This can be seen
best from the Workbench by running a routine a number of times.
Usually, the first execution has a delay while data including definitions is
retrieved then if the same operation is performed without any other
process intervening further executions perform much faster.

5.4.2 Reducing DOB Calls

Each time a GET or FORALL is issued a call is made to the relevant
DOB to extract and return the appropriate row or rows. The more this

Printed on 08/01/11 Page 31 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

can be reduced in number the better will be the performance of the
routine.

This can be used to advantage in the design of data access routines
which contain nested FORALLs. If, for example, there are two tables
involved, one with a few rows and the other with many and linked by
common fields, then using the smaller table as the outer loop will reduce
the number of calls to the DOB. For example, if one table contains 10
rows that meet the selection criteria and the other 1000, then the
number of calls will be 11 (1 for the first table and 10 for the second) as
opposed to 1001 (1 for the first table and 1000 for the second) if the
tables are nested the other way. This schema can be applied to multi-
level nesting in the same way. However, the benefits may be
outweighed if it is not possible to use the first Primary key for the inner
loop or loops because of the retrieval overheads mentioned in the
following sections.

5.4.3 Mode
A simple rule to observe is ‘Run in Browse Mode wherever possible’.

This is because it not only reduces the possibility of locking but as part
of this reduces the ‘handshaking’ message traffic to and from the DOB
which can be considerable. There is a trace facility which can be used to
report this traffic where a performance issue is being investigated.

Where it is required to update persistent data an Update sub-transaction
is used. This does, however, raise a possible synchronization issue which
is discussed later in the Coding Techniques section.

Note that OSB™ now has a $TRXMODE function which returns the
current mode and can be used in generic routines to determine if a
further transaction level is required to perform update actions.

5.4.4 Table Sweeps

The earlier section on WHERE clauses describes how these clauses —
especially complex ones — are interpreted. The way in which the DOB
processes such a call depends on the fields used in the selection.

If ALL test sets generated by the deconstruction of the WHERE clause
include at least one test against the first Primary key then the index
pages will be used to access those rows with matching key values. This
results in a relatively fast access. If the index key is not referenced in
ANY set a check is made to determine if a Secondary Index is
referenced and if so, this will be used. If not, a sweep of the entire table
or occurrence will result. For a large table this can take a significant
time.

However...

Printed on 08/01/11 Page 32 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

f&LUT'ONS OSB™ Data Access Rel 1.6

The DOB analysis routines are complex and best described as
idiosyncratic (or ‘The Piece of Code that Passeth Understanding’...) and
the way that any particular request is processed depends on both the
selection criteria as explained previously and also — where a Secondary
Index is involved — the actual distribution of data in this index. The DOB
routines may decide to switch to a full table sweep part-way through a
Secondary Index search if the data distribution and index state is such
that a full sweep is actually faster (or considered to be).

There is one exception to the direct retrieval of an equated primary key
that should be noted. If the primary key is a character field, either fixed
or variable, containing numeric values then the following applies:

e If the value is enquoted (e.g. WHERE primarykey = ‘1’) a direct
retrieval will occur if this explicit value exists

e If the value is NOT enquoted (e.g. WHERE primarykey = 1) a
complete table sweep will occur as this value can match any value
which consists of the stated value and any number of leading
zeros (e.g. 1, 01, 001, 0001 etc)

One other point to remember:

While a GET will cause a search for the first row matching the search
criteria, an ORDERED GET is converted in the DOB into a full FORALL
search so that the matching row meeting the ordering criteria can be
returned. This can cause an unexpected table sweep in many cases and
the implications should be considered when designhing access routines.

Printed on 08/01/11 Page 33 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

6 Data Modification

There are three verbs which allow data to be updated. All can refer to an
explicit table name, a rule argument or and indirect address of the form
table.field.

6.1 INSERT

This verb takes data in the buffer for the required table and inserts it
into that table. For volatile data types such as SES and TEM the data is
inserted immediately. For an EXPort table the data is written out to the
external file. For a TDS table the data is placed into the Intent List
(described later in this guide) and written to the physical table on either
transaction end or an explicit COMMIT instruction. For Legacy data the
row is passed to the external database handler for updating as
determined by the Gateway settings.

The format is one of
INSERT tablename (or rule argument or table.field)
INSERT tablename(p1l,..) for parameterised data OR
INSERT tablename WHERE pl1l = parmval &... as an alternative
If the row already exists an INSERTFAIL exception is raised.
If the target table is a TDS or Legacy Data type the transaction must be
executing in Update mode or an INSERTFAIL exception will again be

raised.

If the target table or occurrence is locked then a LOCKFAIL exception
will occur.

6.2 DELETE

This verb deletes the row in the required table identified by the keys in
the buffer for that table. Alternatively, the full key specification required
to identify the row can be specified in the WHERE clause of the DELETE
instruction without a preceding GET. For volatile data types such as SES
and TEM the data is deleted immediately. For a TDS table the delete
request is placed into the Intent List (described later in this guide) and
the row removed from the physical table on either transaction end or an
explicit COMMIT instruction. For Legacy data the keys are passed to the
external database handler for deleting as determined by the Gateway
settings.

The format is one of

DELETE tablename (or rule argument or table.field)

Printed on 08/01/11 Page 34 of 46 Release 1.6

Ltd

IMPULSE OSB ™ 08/01/11
SOLUTIONS OSB™ Data Access Rel 1.6

DELETE tablename(pl,..) for parameterised data OR

DELETE tablename WHERE pl = parmval &... as an alternative

or the above with WHERE keyl = vall & key2 = val2 etc
If the row does not exist a DELETETFAIL exception is raised.
If the target table is a TDS or Legacy Data type the transaction must be
executing in Update mode or a DELETEFAIL exception will again be

raised.

If the target table or occurrence is locked then a LOCKFAIL exception
will occur.

6.3 REPLACE

This verb takes data in the buffer for the required table and replaces the
non-key fields in the corresponding row in the table. For volatile data
types such as SES and TEM the data is updated immediately. Rows in
an EXPort table cannot be replaced. For a TDS table the modified row is
placed into the Intent List and written to the physical table on either
transaction end or an explicit COMMIT instruction. For Legacy data the
row is passed to the external database handler for updating as
determined by the Gateway settings.

The format is one of

REPLACE tablename (or rule argument or table.field)

REPLACE tablename(pl,..) for parameterised data OR

REPLACE tablename WHERE pl = parmval &... as an alternative
If the row has not been retrieved into the data buffer previously or the
key fields in the buffer do not match an existing row in the table a
REPLACEFAIL exception is raised.
If the target table is a TDS or Legacy Data type the transaction must be
executing in Update mode or a REPLACEFAIL exception will again be

raised.

If the target table or occurrence is locked then a LOCKFAIL exception
will occur.

6.4 @WRITEDSN

This is the output equivalent of @READDSN and writes the data in the
string or field referred to in the call to the external file currently opened
by the @OPENDSN tool.

Printed on 08/01/11 Page 35 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

6.5 Data Update

While data in volatile tables such as TEM and SES is updated directly,
TDS data is held in a work area until either the current transaction ends
or an explicit COMMIT call is made. Until one of these events happens
no changes have been made to the physical data. Coding considerations
relating to usage of data rows modified in a transaction but not yet
completed are described earlier in this guide.

It is essential that the elements of the data update process described in
this section are taken into consideration when designing data
modification processes, whether online or batch. In particular, the Unit
of Work concept described in the Transaction Design section is critical in
assuring data integrity in the case of code or system failure.

Note also that if Trigger Event Rules are used to perform linked updates
the data rows from these associated processes are also included in the
Intent List requirements and must be taken into consideration when
designing update transactions. This is especially important when
modifying an existing transaction to add a Trigger process as this may
cause a previously-successful process to overflow the Intent List size.

6.5.1 The Intent List

Earlier releases of OSB™ had a fixed Intent List size which constrained
the ability to build effective Units of Work for complex application
transactions. Current releases allow the Intent List size to be defined as
being from 16k to 32k and application designers should be aware of the
current value specified for their installation. In addition, it is important
to know whether the same value applies to all nodes as this may affect
the behaviour of code at different stages of development.

6.5.2 Transaction Completion

When all code which has been referenced after the execution of an
EXECUTE statement has completed and the transaction therefore
completes and returns control to the next higher level any rows held in
the Intent List are written to the physical database.

This ensures that all associated data where a transaction modifies more
than one permanent table is updated at the same time so that in the
event of failure the data structure referential integrity is preserved.

6.5.3 Explicit Updates - COMMIT

OSB™ allows explicit completion of updates by using the COMMIT verb
which will cause all pending changes to be written to the physical
database within a transaction. This may be necessary where the logical
data update being performed exceeds the capacity of the Intent List.

Printed on 08/01/11 Page 36 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

This should be used with great care to avoid possible loss of data
integrity where failure occurs after part of a related set of updates have
been written but before the rest have been done. This includes the
possibility that one or more of the target tables has been locked by
another user. Wherever possible, transaction and data design should
ensure that each logical data update can be performed in a single
operation.

An example of where COMMIT can be used safely is where the data to
be updated in a single table consists of a number of rows which are
passed into the update transaction in a SES table. The update code then
performs a FORALL on this table calling the update code for each row,
deleting the input row after this has been done and issuing COMMIT
after a specific number of rows have been processed so that the Intent
List size is not exceeded. This process can then be safely restarted in
the event of failure, especially locking, as the SES table will only contain
unprocessed rows.

6.5.3.1 COMMITLIMIT

If the Intent List size is exceeded the COMMITLIMIT exception is
raised. This can be trapped and processing continued by calling
COMMIT followed by the same operation (INSERT, REPLACE or
DELETE) to the SAME table for which the exception was raised. This
technique can be used safely with simple updates where a retry can be
made without any possibility of incorrect data modification but must be
done with great care.

IMPORTANT: If any of the tables to which updates are being written
have Trigger rules which in turn generate updates there is a high risk of
compromising data integrity as the exception may occur on either the
base table or an associated Trigger table in which case the re-execution
of the failing call may cause the primary data to be modified incorrectly.
This can occur because any updates in the Trigger rules are processed
before the base table change. If the COMMITLIMIT exception is raised
by this update, the retry in the ON COMMITLIMIT will result in the
Trigger changes being repeated. Unless the Trigger rule code specifically
allows for this situation then incorrect results can result.

Note also that the COPYTABLE utility supplied as a standard tool uses
the ON COMMITLIMIT: COMMIT technique. It should NOT be used to
copy data which has triggered updates unless the above code precaution
has been made.

The $GETOPT functions has two values which can assist in determining
in code whether the Intent List size is about to be exceeded.

S$GETOPT(‘COMMITSIZE’) returns the maximum Intent List size
$GETOPT(‘COMMITUSED?”) returns the current size.

6.54 ROLLBACK

Printed on 08/01/11 Page 37 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

The ROLLBACK verb clears all current pending changes from the Intent
List. It should always be used where an update transaction has failure
recovery processes and further modification can occur in the same
transaction in order to ensure that no change elements of the withdrawn
update package remain and are then processed with the next set of
changes in the same transaction.

6.5.5 Locking

A full description of the way OSB™ manages locking is included in the
distributed Processing manual. The following is a brief overview of this.

In order to guarantee data integrity, any data access, whether retrieval
or update, raises a lock condition to prevent any other process from
making changes which could compromise this integrity.

There are two types of locks, Shared and Exclusive. The type of lock
raised depends on both the current access mode (Browse or Update)
and whether the data access is retrieval or update.

Locks are ALWAYS held until the current transaction has ended and
cannot be released manually.

6.5.5.1 Browse Mode

A Shared lock is raised on the table definition (and for a SUBview on the
source table definition) when a GET or FORALL is issued to any table or
an update is made to a non-persistent table type (such as TEM) to
prevent the definition(s) being changed during the process. The data is
not locked.

6.5.5.2 Update Mode

A Shared lock is again raised on the table definition(s) as described
above.

A GET or FORALL with a WHERE clause that specifies equality for ALL
Primary keys will raise an Exclusive lock ONLY on that specific row. Any
other GET or FORALL will raise an Exclusive lock on the complete
occurrence. The two exceptions are where a Browse Mode SUBview is
used when NO locks are taken on the data and on access to a CLC table
when a Shared lock is taken on the occurrence.

A DELETE, INSERT or REPLACE will upgrade the Shared lock taken

when the data was retrieved to an Exclusive lock for the WHOLE
occurrence.

6.5.5.3 Legacy Data
When accessing Legacy data in Browse mode, no data locks are taken

and no updates can be made. In Update mode the locking actions taken
depend on the specific options used within the Legacy Gateway. The

Printed on 08/01/11 Page 38 of 46 Release 1.6

Ltd

IMPULSE OSB ™ 08/01/11
SOLUTIONS OSB™ Data Access Rel 1.6

relevant published Gateway manual should be used as a reference for
this.

6.5.6 Recovery

OSB™ has as an integral part of its design a very effective recovery
process which if used correctly guarantees data integrity in the case of a
system or hardware failure.

Any data updates which have not been written to the physical database
in such a case are held in the Redo Log which is processed each time
the DOB is started. This means that before any further activity starts all
pending updates are cleared. The only potential exception to this relates
to Legacy data where additional steps may have to be taken to
guarantee updates to the external databases.

6.6 Distributed Data

6.6.1

6.6.2

If Distributed Data has been implemented so that one or more remote
nodes can be accessed from the current one, data in the other nodes
can be accessed by means of the LOCATION parameter described
earlier. There are three main benefits provided by this feature.

1. Data can be maintained on a single node but accessed from
others directly. For example, where an application is
implemented at a number of different sites, data at one site can
be viewed or merged with data from other sites to provide high-
level reporting.

2. Data accessible directly only from a particular platform (e.g.
Legacy data) can be accessed by applications running on a
different platform which does not support this data type directly.

3. Objects or data in different nodes can be compared directly to
ensure consistency or to identify differences. Impulse Solutions
Ltd provides a number of tools specifically designed to support
this requirement.

Definition

In order to access remote data, the local definition of the table to be
accessed must have a LOCATION parameter. SUBviews of remote
tables can be defined and accessed in the same way.

Access

When a data table for which a LOCATION parameter has been defined
is accessed without a value for this parameter, data on the local node is
used as in the case where no LOCATION parameter is defined.

If data on a specific node is needed this should be added to the call
either as the last (or only) parameter or in a WHERE clause.

Printed on 08/01/11 Page 39 of 46 Release 1.6

Ltd

IMPULSE OSB ™ 08/01/11
SOLUTIONS OSB™ Data Access Rel 1.6

For example:

GET table(location)

GET table(parm,...,location)

GET table WHERE LOCATION = location

GET table(parm,..) WHERE LOCATION = location

If the requested node is not active or does not exist the SERVERFAIL
exception is raised. If the data on the selected node cannot be accessed
the SERVERBUSY exception is raised. If data exists in both the local
and remote node, both copies must be available at the time of the call.
Note that if a LOCATION parameter has NOT been defined access will

fail with a condition dependent on which of the above call options has
been used.

6.6.3 Consistency

Although Minimal Definitions as described earlier can be used where
data is available ONLY on a remote node, there may be good reasons
related to Promotion consistency for using a full definition on the calling
node. Although consistent definition across all nodes is very important
to guarantee integrity, for distributed data it is ESSENTIAL that the local
and remote definitions are consistent. It is recommended that a full
definition is created in the development environment and promoted to
all other nodes in the development chain; where a minimum definition is
required the definition should then be modified to change it into this
format.

6.7 Event Rules

OSB™ has a very powerful feature which can be used to automate a
number of key data-related processes. This is the ability to define Event
Rules as part of table definitions. These have control flags which
determine for which aspects of data access or modification they are to
be run and which type they are. There are two types — Validation and
Trigger — which are described in the following sections.

Note that until Event Rules have been promoted to the SITE Library the
Local Library in which they are held must be used for any testing of
related processes and, in addition, certain standard workbench functions
cannot be used directly as they use a search path which bypasses the
Local Library. The two most affected are the BR and ED menu options.
When testing Event Rules it is necessary instead to execute directly the
actual rules called by these menu commands; these are STEBROWSE
and STE respectively which take a single argument of the table name or

Printed on 08/01/11 Page 40 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

an enquoted table specification string for an occurrence of a
parameterised table.

6.7.1 Validation

A Validation Rule is called when the data action for which it is specified
is performed and is used to validate the data conditions that currently
exist. It must be a Function which returns the value Y if the validation
process is successful or a message to be displayed if it is not when the
VALIDATEFAIL exception will also be raised. It may in turn call other
rules. Screen definitions can also contain Validation Rules but these are
not within the scope of this guide.

A common usage is to check entered values which are in the current
data buffer for the source table against reference data in other tables.
Note that this is a situation where the use of Browse SUBviews as
described earlier can be of very great assistance in minimising both the
possibility of locking and also process overhead.

6.7.2 Triggers

A Trigger Rule is called when the data action for which it is specified is
performed. This is equivalent to — for example — an SQL Stored
Procedure. Trigger Rules cannot be Functions although they may use
embedded Function Rules. They allow additional code to be run
automatically when a particular data action occurs.

A common use for Trigger Rules is when a data structure consists of a
set of related data tables. Although the updates to these can be done in
‘open code’ Trigger Rules allow related updates to be done as a standard
‘prepackaged’ function.

6.7.3 Change Identification

In both types of Event Rule it may be necessary to compare a field value
with the existing one when an update is taking place. An effective
technique for doing this is to have both a TEM and Browse SUBview
defined for the table to be checked. The current buffer is transferred to
the TEM table buffer, a fully-keyed GET issued to retrieve the current
version of the record (which will also show if it exists) and the fields
compared as required. The updated data is then restored to the base
table buffer to allow the action to complete.

6.7.4 Current Values
Although Event Rules can be written for specific base tables, there are
many cases where a generic process is needed. In this case, two tools
are provided to provide the necessary information.

EVENTTABLE returns the name of the table which has caused the event

Printed on 08/01/11 Page 41 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

PARMVALUE(parmname) gives the current parameter values

6.7.5 COMMIT Implications

Where a Trigger Rule performs updates to additional tables, the new or
modified rows are included in the current Intent List. This must be taken
into consideration when designing Trigger processes to ensure that the
installation limit is not exceeded by this.

6.8 UNTIL... END Loops

Although it was the original intention to have no traditional UNTIL...
END loops in OSB™, there are two situations where this can be used
effectively.

The first, which is outside the scope of this document, is in handling
screen processing where the UNTIL condition format is used to allow
repeated access to the screen until a termination condition is set.

The second is used in data access to support situations where a code
process is repeated a number of times until a condition is raised and
trapped either by the UNTIL or by an external ON routine.

6.8.1 Repetitive Processing

Where a code process is dependant on a data source which may change
during the timespan of the process, this usage allows it to be repeated
until a condition is detected that indicates that no further action is
required.

6.8.2 Lock Management

This is a variation of the above for situations where an update process
may fail because of a transient lock (for example, where the data table
to be updated is in use by another process for a limited time).

An effective method of handling this situation is to use an UNTIL... END
loop which calls an inner rule which in turn EXECUTEs the update code.
When the update is successful the inner rule raises the condition to end
the loop. The call to the inner rule is followed by an increasing delay
using the $SLEEP function to allow the external lock to be released
before retrying the process.

The inner rule should test the value related to the delay and, when it
exceeds a specified value, cause a user-define exception to be raised
which is trapped elsewhere as a genuine lock condition. The inner rule
should have an ON EXECUTEFAIL exception with a ROLLBACK to
allow the code to drop out to the outer rule for retry.

Printed on 08/01/11 Page 42 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

E&LUT'ONS OSB™ Data Access Rel 1.6

This method provides a very effective way of handling contention
situations, particularly in an online application.

Printed on 08/01/11 Page 43 of 46 Release 1.6

IMPULSE oSsB ™ 08/01/11

ftc;'—UT'ONS OSB™ Data Access Rel 1.6

7 Coding Techniques

This section is not intended to be a comprehensive guide to the
development of data access code but simply to highlight a number of
areas where the performance of a routine can be improved or where
techniques are available to assist with access issues.

7.1 Efficient Data Design and Access

When designing a database structure the key structure and relationship
between different tables in a related group should be considered to
allow retrieval wherever possible to be by the use of the first Primary
key as part of any selection. While this is not always possible, this
approach will optimise performance of the routine and can provide
significant performance benefits.

7.2 Complexity v Inner Rules

If a complex selection is required in a WHERE clause it may be more
effective (and easier to understand for maintenance) to use a simpler
selection and filter the returned rows further in an inner rule which can
test for exclusion conditions. The number of excess rows likely to be
returned by the initial selection should be taken into consideration in
designing the routine, however.

7.3 Multiple Use of a Table

The processing logic in a FORALL loop may require access to either
another row in the current occurrence or a row in another occurrence if
the table is parameterised.

This can be met by use of a ‘mirror’ SUBview table (or in some cases
tables) which allow effective multiple access to the same data without
losing position in the loop.

Note that this applies only to persistent data. Where a similar
requirement exists when processing SES or TEM data it is necessary to
define one or more matching or similar tables (depending on the field
usage required) and copying the data from the main table before
processing. This copy must, of course, be refreshed if the loop on the
transient table is repeated.

7.4 Transaction Design

It has already been established that routines should wherever possible
run in Browse mode until an update is performed by an Update sub-
transaction. This can raise integrity issues especially in online
applications where a retrieved row has been updated by another user
before the current user performs the update.

Printed on 08/01/11 Page 44 of 46 Release 1.6

Ltd

IMPULSE OSB ™ 08/01/11
SOLUTIONS OSB™ Data Access Rel 1.6

A common technique to resolve this is to add a counter field to the
definition of the table or root table for a structure which is updated each
time the row is modified. The value of this field is stored by the calling
application and passed into the update routine where the row is
retrieved (even when inserting a row). The next counter value is also
obtained from a control table which is updated to ensure no other user
can get the same value; this is also passed into the update routine. This
will first check that a row to be inserted does not already exist, that a
row to be deleted still exists and an existing row has the same counter
value as when retrieved. If the last condition is true the counter is
updated with the new value passed in. If an error condition is detected
the update routine completes without update and returns a value which
causes the calling routine to retry the process; for an online routine this
will usually return control to the screen handler with a message to allow
the user to retry the action and which will usually repopulate the screen
fields with the new values found.

Note that in Release 5 an EES table can be used to assist this process as
described earlier in this publication.

7.5 Shadow Tables

The use of Secondary Indexes has been described earlier and these can
provide an effective method of viewing data from a different
perspective. However, where the data has a high volatility with frequent
inserts, deletions and updates, this may not provide an efficient retrieval
process.

An alternative in this situation is to define a ‘shadow’ table containing
the same fields as the base table but keyed on the field(s) intended to
be used for Secondary Indexes. This table can be managed by a Trigger
process to ensure that each base row has an equivalent ‘shadow’ row.
This technique then allows fast access in either usage by means of the
primary keys of either the base table or the shadow copy.

Printed on 08/01/11 Page 45 of 46 Release 1.6

IMPULSE OSB ™ 08/01/11
ftc;'—UT'ONS OSB™ Data Access Rel 1.6
8 Tools

In order to assist developers of data access routines, Impulse Solutions
Ltd provide a number of tools to check for potential issues at coding
stage. In addition to checking the consistency of data access statements
in relation to the tables and fields referenced, they also examine
conditional access clauses to determine if inefficient searches are likely
to occur.

These tools are described more fully in the relevant Impulse Solutions
Ltd User Guides.

8.1 TAM Analyser
This routine scans a rule for table-related TAM statements and validates
them for consistency. If the table reference is to an explicit table it is
checked to ensure that it exists and all field and parameter references
are checked against the table definition. Any errors are reported
including an incorrect number of parameters.
Any WHERE clauses are deconstructed into selection sets and if any are

detected which are liable to cause a table sweep an error report is
generated

8.1.1 Extended Rule Editor Line Command

A new line command 1 (I0OCheck) has been added to the Extended Rule
Editor to invoke this function.

8.1.2 Rule Set Analyser

This tool scans a set of rules selected by Library, Rule Name Mask
and/or UNIT and reports on any where errors are detected.

8.2 Cross-Reference Auditor Extensions
A new table has been added to the Data Auditor output set to record all

table-related TAM call elements and a checker routine provided which
reports on errors in these.

8.3 Data Dictionary
Tools have been added to maintain the Data Dictionary by detecting
new and modified table definitions and adding or updating the
corresponding entries.

A further tool allows the user to view the usage of a specific field.

Printed on 08/01/11 Page 46 of 46 Release 1.6

	Contents
	Changes from Previous Issue
	Document Cross References
	Revision History
	Impulse Solutions Ltd

	Introduction
	Acknowledgements
	Disclaimer
	Intellectual Property Rights

	OSB™ Data Access Concepts
	Overview
	OSB™ Architecture
	The MetaStor
	The TABLES Table
	Parameters
	Segmentation
	Distributed Processing

	Table Definitions
	Ordering
	TDS Tables
	PRM Tables
	EES Tables
	SES Tables
	TEM Tables
	Screen and Report Tables
	Legacy Data Gateways
	Fail Safe Processing

	External Files
	SUBviews
	Browse Mode SUBviews

	CLC Tables
	COUNTOCCURRENCES

	Memory Tables
	Minimal Definitions
	Rules
	Libraries

	Fields and Parameters
	External Tables
	Screen Tables
	Report Tables
	Data Assignment
	Field Consistency
	Global Fields
	Data Dictionary

	Primary and Secondary Indexes
	Defining a Secondary Index
	Secondary Index Structure
	Secondary Index Management

	Data Retrieval Options
	Data Retrieval
	GET
	GET after INSERT DELETE or REPLACE
	GET WITH MINLOCK

	FORALL
	FORALLA/B/E
	TAM Parameters
	PARSE_TAM

	@FORALLA
	@READDSN
	Use of MAP tables

	Indirect Addressing
	Rule Arguments
	Coded Access
	Table-Driven Access

	Data Retrieval Processes and Options
	WHERE Clauses
	Structure Options
	Operators
	Values
	Basic Selection

	Reverse Polish Notation
	Interpretation of Complex Clauses
	Parentheses
	^ (NOT) Operators

	Example of Complex Selection

	ORDERED
	Sorting
	Implications for GET

	UNTIL
	Performance Implications
	Data Persistence
	Binding
	Memory Retention

	Reducing DOB Calls
	Mode
	Table Sweeps

	Data Modification
	INSERT
	DELETE
	REPLACE
	@WRITEDSN
	Data Update
	The Intent List
	Transaction Completion
	Explicit Updates - COMMIT
	COMMITLIMIT

	ROLLBACK
	Locking
	Browse Mode
	Update Mode
	Legacy Data

	Recovery

	Distributed Data
	Definition
	Access
	Consistency

	Event Rules
	Validation
	Triggers
	Change Identification
	Current Values
	COMMIT Implications

	UNTIL… END Loops
	Repetitive Processing
	Lock Management

	Coding Techniques
	Efficient Data Design and Access
	Complexity v Inner Rules
	Multiple Use of a Table
	Transaction Design
	Shadow Tables

	Tools
	TAM Analyser
	Extended Rule Editor Line Command
	Rule Set Analyser

	Cross-Reference Auditor Extensions
	Data Dictionary

