

Rexx

Reference
Manual
(TSO)

by David Grund

Page [2]

Rev 10 – May 13, 2012

Rev 9 – July 20, 2011

Rev 8 – June 18, 2011

Rev 7 – April 13, 2011

Page [3]

Table of Contents

TABLE OF CONTENTS ..3

REXX REFERENCE MANUAL (TSO) ..8

SECTION I - REFERENCE ...10

GENERAL RULES ...10

ABBREV ..11
ABS ...12
ADDRESS ..13
APOSTROPHES ...15
ARG ..15

ASSIGNMENT STATEMENT ..16
BITAND ..17

BITOR ...18

BITXOR ..19
B2X ..21
CALL ...22

CALL ON ...24
CENTER/CENTRE ...25

CLIST ..26
COMMA ...27
COMMENTS ...28

COMPARE ..29

COMPARISON OPERATORS ..30

CONCATENATION ..31
CONDITION ...32

CONTINUATION ...33
COPIES ..34
C2D ..35

C2X ..36
DATATYPE ..37

DATE ..38
DELSTACK ..39
DELSTR ..40

DELWORD ..41
DIGITS...42

DO ..43
DROP ..46

D2C ..47
D2X ..48
END...49
ERRORTEXT ..50
EXECIO...51
EXIT ..55

Page [4]

EXPOSE ...56

EXTERNAL ..57
FIND ..58
FORM ..59

FORMAT ..60
FUZZ ...61
IF ..62
IF, COMPOUND ..64
IF-THEN-DO ..65

INDEX ...66
INSERT ..67
INTERPRET ..68
ITERATE ..69

JUSTIFY ...70
LABELS ...71

LASTPOS ...72
LEAVE ...73

LEAVE ...73
LEFT ...74
LENGTH ..75

LINESIZE ...76
LISTDSI ..77

LITERALS ..81
LOGICAL OPERATORS ...82
MATH ...83

USAGE ..83

MAX ...84
MIN ...84
MSG ..85

NEWSTACK ...86
NOP..87

NUMERIC ..88
Numeric Digits ...88

Numeric Form ..89
Numeric Fuzz ...90

OPERATORS ..92
OUTTRAP ..93
OVERLAY ..94

PARSE ...95
POS ...100

PROCEDURE ..101
PROMPT ..104
PULL ...106
PUSH ...107
QSTACK ..108
QUEUE ..109

Page [5]

QUEUED ..110

QUOTATION MARKS/APOSTROPHES ..111
RANDOM ...112
RC ..113

RESULT ...114
RETURN ..115
REVERSE ...116
RIGHT ...117
SAY ...118

SELECT ...119
SEMI-COLON ...120
SIGL ..122
SIGN ..123

SIGNAL ...124
SIGNAL ON ...125

SOURCELINE ...126
SPACE ...127

STACK ...128
STRIP ..130
SUBCOM ...131

SUBSTR ...132
SUBWORD ..133

SYMBOL ..134
SYSDSN ..135
SYSVAR ..136

TIME ...137

TRACE ...139
TRANSLATE...140
TRUNC ..142

UPPER ...143
USERID ...144

VALUE ..145
VARIABLES ...146

VARIABLES, COMPOUND ...147
VERIFY ...148
WORD ...149
WORDINDEX ...150
WORDLENGTH ..151

WORDPOS ...152
WORDS ...153

XRANGE ...154
X2C ..155
X2D ..156
INSTRUCTIONS NOT COVERED ..157

SECTION II -A STARTER REXX TUTORIAL ..158

SECTION III - REXX EXAMPLES ..160

Page [6]

ALLOCEIO - ALLOCATE O/P DATASET; WRITE ARRAY TO IT162

CAPTSO - CAPTURE TSO COMMAND OUTPUT ...163
CHGBLKC - INSERT A COBOL CHANGE BLOCK ...164
CHGDATA - MODIFY A DATA FILE ..165

CHGSTEP - CHANGE STEPS IN JCL..168
COFFEE – THE COFFEE GAME ...169
COMPCO - COMPARE TWO FILES OF ORDER NUMBERS ..171
COMPARE - COMPARE TWO SEQUENTIAL DATASETS ..174
COMPDSE – COMPARE TWO SEQUENTIAL DATASETS - ENHANCED175

COMPPDS - COMPARE TWO PDS'S ...177
CONCATL - CONCATENATE LIBRARIES ...181
CPDSIX – COMPARE TWO PDS INDEXES ...183
DD - ADD A DD STATEMENT ..186

DELDUPS - DELETE DUPLICATE RECORDS ...188
DURATION - TIME AN EXEC ...189

FINDMEM - FIND A MEMBER IN A CONCATENATION ...190
FIXJCL - FIX JOB CONTROL ..193

FX - FILE NAME CROSS-REFERENCE ..209
GUESS – GUESS THE NUMBER ...215
HD - HEX DUMP ...217

INIT - ESTABLISH MY TSO ENVIRONMENT ...220
INITSPF - ESTABLISH MY ISPF ENVIRONMENT ..221

JOBCARD - CREATE A JOBCARD ...222
LA - LIST TSO ALLOCATIONS ...223
LAE - ISPF EDIT MACRO FOR LA ...224

LOTTERY - PICK LOTTERY NUMBERS ..225

LISTDSI - LIST DATASET INFORMATION ...227
LPDSIX - LIST A PDS INDEX TO A SEQUENTIAL FILE ..228
PRIME – CALCULATE PRIME NUMBERS ...230

PROCSYMS - PERFORM SYMBOLIC SUBSTITUTION ..231
PTS - PDS-TO-SEQUENTIAL; MEMBER NAME IS PREFIX ..235

PTS2 - PDS-TO-SEQUENTIAL; MEMBER NAME IS INSERTED ..238
REXXMODL - REXX EXEC MODEL ..241

SCALE - DISPLAY A SCALE ..242
SCANLIBS – SCAN LIBRARY CONCATENATIONS ...243
SDN - SORTED DIRECTORY W/NOTES (DIRECTORY ANNOTATOR)247
SHOWDUPS - SHOW DUPLICATES ..251
STACK - START ANOTHER ISPF SESSION ...252

TIMEFMTS - SHOW ALL TIME FORMATS ...253
TIMETOGO - DISPLAY TIME UNTIL AN EVENT ...254

SECTION IV - THE REXX ENVIRONMENT ..255

ESTABLISHING YOUR REXX ENVIRONMENT ...257
USING REXX WITH ISPF ...259
USING REXX IN THE BACKGROUND (BATCH JOBS) ...261
DEBUGGING YOUR REXX PROGRAM ..262

Interactive Trace Mode ..262

Page [7]

TRAPPING ERRORS ..263

SIGNAL ON CONDITION ..263
SIGNAL OFF CONDITION ..263
CALL ON CONDITION NAME SUBROUTINENAME ...263

CONDITION ...263
EXAMPLES ..264

APPENDIX ...267

REXX INSTRUCTIONS ...267
REXX FUNCTIONS ..267

TSO EXTERNAL FUNCTIONS ...267
TSO COMMANDS ..267
OTHER REXX REFERENCES ...268

Page [8]

Rexx Reference Manual (TSO)

 Rexx is the Restructured Extended Executor Language. New with TSO/E version 2, Rexx

is a high-level procedural language that allows programmers to mix instructions with TSO

commands, and build high-powered tools and utilities, called “exec”s.

Rexx is a programming language, and a scripting language. Rexx is a fascinating

language. It is, from my viewpoint, IBM's answer to Basic. It is an English-like interpreted

language. No compiler is needed. The computer reads the instructions, one at a time, and if it can

interpret it, it will execute it.

 The thing that Rexx is best suited for is to create data-manipulation tools, especially for

one-time use or for development. Once you learn how to use the language, you can tailor data in

ways you never dreamed.

 Why learn Rexx? Knowing Rexx can give you a powerful advantage. Being able to

manipulate data in esoteric and creative ways can be a tremendous aid to your productivity. Rexx

can be very useful for creating and verifying test data, formatting output data, file-integrity-

checking, and creating tools that help make your job easier. More than anything else now, Rexx

is used to drive ISPF dialogues.

 A Rexx program can be written far more quickly than one for COBOL or Assembler, for

the same task at hand. You wouldn't want to use Rexx in production for high-volume files,

though. That's the job of a compiled program. Rexx is for the "quickie", and low-volume tasks.

 The reason I decided to write this book, is that with the reference I was using, it took too

long to find information that I was looking for. The author of that book knew his stuff, but I felt

he had no clue as to what to present, or how to present it. The organization of that book and lack

of meaningful examples was frustrating, and simply not acceptable.

 This reference discusses Rexx and its use with TSO, as opposed to CMS or personal

computers. The intended audience for this book is all levels of mainframe programmers, and

"computer-literate" users. You should be at least familiar with TSO, have a TSO UserID, and be

able to log on to a mainframe.

 I wrote this from the point of view of a Rexx user, and not a teacher. While I was writing

this, I envisioned real-life situations that I could find myself in, and I then tried to illustrate the

best way to handle it. The examples were not written for the sake of example; they were written

to show how to solve a given problem. I added many examples from my real-life work

experience. These are execs that I used to solve real problems.

 So it is my hope that this reference is easy to use, has useful and pertinent examples, and

can help you get your job done. This manual is the quickest way to get up, running, and

productive in Rexx.

Page [9]

 All of the examples in this book have been tested on an IBM mainframe, on Rexx370

Vers 3.48 01 May, 1992. Any errors resulting in the use of these examples would probably then

be due to environmental differences, or the transfer of the example from this document.

 If there is something about this book that really bugs you, or really pleases you, or if you

have any other comments, criticisms, or suggestions, please feel free to e-mail me at:

RexxManual@davidgrund.com.

 This book is divided into five sections.

 The first section is a reference, for the experienced programmer. I put this section first

because I feel that this will be the one that is used the most. With this format, you don't have to

worry about whether a Rexx component is a function, instruction, or anything else. Just flip

through the alphabetically-sorted reference, find the keyword, read, and use!

 The second section of this book is a short Rexx tutorial. This is where the beginner

should start.

 The third section of this book contains examples: useful examples.

 The fourth section of this book is on the Rexx environment: how to establish and

maintain it, and how to use it alone, and in conjunction with ISPF.

 The fifth section of this book, the appendix, contains lists of instructions by class, and

other Rexx references.

Page [10]

Section I - Reference
General Rules

Form: The Rexx language is generally free-form. You can put any number of spaces

between instructions, operands, etc.

 The elements of a Rexx exec are: Rexx instructions, Rexx functions, TSO

external functions, and TSO commands.

 These elements generally end at the end of a line or at the beginning of a

comment, whichever comes first. They can be stacked on the same line if

separated by semi-colons.

First Line: A Rexx exec is identified by the character string "REXX" (no quotation marks) in

the first line of the exec, but only if allocated to SYSPROC. If the exec is part of a

SYSEXEC library, then this is not necessary. Generally, it is recommended to

start a Rexx exec off with a comment stating the name, short description, and

"REXX" keyword, as follows:
 /* MyFirst - MyFirst Rexx Program */ or

 /* Calc1 - My Calculator Rexx */

 Rexx is also case-insensitive. Use upper- or lower-case letters at your discretion. Note,

however, that some functions look at the case of letters!

 All values that appear in Rexx statements are translated to upper case unless they are

enclosed in matching apostrophes or quotation marks.

 In some cases, not all of the operands of an instruction are discussed. There are some

operands that are highly esoteric, that I feel will be needed only in extremely specific situations.

The appendix contains information on additional Rexx reference material.

 The limit on the length of symbols (variable names) is 250 characters, although using one

of that length is usually impractical.

 The storage limit for any variable is 16MB.

Page [11]

Abbrev

Purpose: Return a 1 (TRUE) or zero (FALSE) based on the test that a word begins in a

certain string. It is a subtle variation of the LEFT function.

Type: Rexx Function

Syntax: Result = ABBREV(word,string,length)

Usage: If the first length characters of word = string, then result will be TRUE.

Examples: Result = ABBREV("America","Am",2)

 /* TRUE; Result = 1 */

 Result = ABBREV("America","mer",3)

 /* FALSE; Result = 0 */

Page [12]

Abs

Purpose: Return the absolute value of a number: drop the sign, and format according to the

current setting of NUMERIC DIGITS.

Type: Rexx Function

Syntax: NewNum = ABS(OldNum)

Example: NewNum = ABS(-436)

 NewNum will be 436.

Page [13]

Address

Purpose: Return or change the setting of the environment that is currently receiving

commands

Type: Rexx Function and Rexx Instruction

Syntax: 1) Address Environ string (instruction)

 2) Environ = Address() (function)

Usage: Rexx passes to the environment any strings that are enclosed in quotation marks

(or apostrophes), or any that it does not know what to do with.

1) The instruction form sets the environment that will receive these strings that

are fed through by Rexx. This setting is "permanent" (for the duration of the

current exec), unless it is supplied on the same line. If it is, then the setting

that is specified is valid only for the string on that line. Rexx doesn't care what

you set the environment to at the time you use this instruction. There is no

validation at this point. The default is "TSO".

 2) The function form simply returns the current environment setting

See Also: SubCom

Example 1: The following Rexx exec illustrates the use of the Address function and the

Address instruction.
 Say "Environ = " Address()

Address TSO

 Say "Environ = " Address()

 Address ISPEXEC

 Say "Environ = " Address()

 Address MVS

 Say "Environ = " Address()

 Address Junk

 Say "Environ = " Address()

 Address Dave

 Say "Environ = " Address()

 Will display:
 Environ = TSO

 Environ = TSO

 Environ = ISPEXEC

 Environ = MVS

 Environ = JUNK

 Environ = DAVE

Page [14]

Example 2: The following Rexx exec illustrates the effects of the use of Address:
 1 "Browse Dataset(Rexx.Exec) "

 2 address ispexec

 3 "Browse Dataset(Rexx.Exec) "

 4 address ispexec "Edit Dataset(Rexx.Exec) "

 Explanation of the above exec:

 1 This is a character string that Rexx does not understand, so Rexx passes it to the

environment. Since the environment was not set, it remains as "TSO". TSO, in

turn, does not know what to do with this character string, so the following

displays:
 COMMAND BROWSE NOT FOUND

 3 *-* "Browse Dataset(Rexx.Exec) "

 +++ RC(-3) +++

 2 Rexx now sets the environment to "ISPEXEC" (the name for ISPF's

environment).

 3 ISPF receives this character string, and knows what to do with it, so it opens the

dataset called "Rexx.Exec" for Browse.

 4 This line is setting the environment at the same time as sending the string. ISPF

then edits a dataset called "Rexx.Exec".

Example 3: This exec demonstrates the "temporary" environment setting.
 1 address TSO

 2 address ispexec "Edit Dataset(Rexx.Exec) "

 3 "Browse Dataset(Rexx.Exec) "

 4 address ISPEXEC

 5 "Edit Dataset(Rexx.Exec) "

 In the above exec,

 Line 1 sets the environment to "TSO"

 Line 2 will edit "Rexx.Exec", having set the environment temporarily to

ISPEXEC.

 Line 3 will err, because TSO does not recognize the command:
 COMMAND BROWSE NOT FOUND

 5 *-* "Browse Dataset(Rexx.Exec) "

 +++ RC(-3) +++

 Line 4 will set the environment to ISPF

 Line 5 will edit the dataset successfully.

Page [15]

Apostrophes

Purpose: To enclose a literal (character string).

See "Quotation Marks/Apostrophes" for documentation on this function.

Arg

Purpose: Retrieve data from the TSO command line or from a calling routine.

Type: Rexx Function and Rexx instruction

See "Parse" for documentation on this function.

Page [16]

Assignment Statement

Purpose: To assign a value to a variable. The value you assign to the variable can be any

type: character, number, hex, binary, etc.

Syntax: Variable = ValueFormat

 Variable The name of the variable being assigned. It can be

 up to 250 characters long, but I don't know why you

would want to do that to anyone.

 Value The value that you are assigning to the variable

 Format The representation of the value. The default is

 character. Valid values are "X" for hexadecimal,

 and "B" for binary.

Examples: A = 1 assigns the value '1' to the variable 'A'

 B = "F1F2F3F4"x assigns the value '1234' to variable 'B'

 C = '11110010'B assigns the value '2' (X'F2') to C

Page [17]

BitAnd

Purpose: Return a string that is the result of two strings that were logically AND'd together.

Type: Rexx Function

Syntax: Result = BitAnd(string1,string2,padString)

 String1 and String2 are the strings used in the AND operation.

 padString is a string used for padding

Usage: To AND two strings is to multiply the bits of one string to the corresponding bits

of the other string, and return the result. In English, it reads, "If the bit of the first

string AND the corresponding bit of the second string are both on, then the

resulting bit will be on. Otherwise, the resulting bit will be off."

 padString is used to fill the shorter of the two strings (on the right) so the strings

are the same length when being processed. If no padString is supplied, the

operation works only for the length of the smaller string.

 The sole purpose this function has is to do bit-level manipulation.

 This function is the opposite of BitOr.

Example 1 The following example will convert a one-character reply from upper-case to

lower case, by virtue of turning off bit 1:
 ResultString = BitAnd('Y','10111111'B)

 Say ResultString

 The upper case 'Y' is X'E8', or B'11101000'.

 The lower case 'y' is X'A8', or B'10101000'.

Example 2 The following example will convert all letters of a string to lower case (taking the

above example a step further).
 Sentence = "The Quick Brown Fox Jumps Over The Lazy Dog"

 ResultString = BitAnd(Sentence,'10111111'B,'10111111'B)

Example 3 The following example does the exact same thing.
 Sentence = "The Quick Brown Fox Jumps Over The Lazy Dog"

 ResultString = BitAnd(Sentence,'BF'X,'BF'X)

 Notice that the coding in this example is a little shorter, but not as clear to the

reader: a binary 10111111 equals a hexadecimal BF. I prefer example 2 to

example 3 because it is clearer.

Page [18]

BitOr

Purpose: Return a string that is the result of two strings that were logically OR'd together.

Type: Rexx Function

Syntax: Result = BitOr(string1,string2,padString)

 String1 and String2 are the strings used in the OR operation.

 padString is a string used for padding

Usage: To OR two strings is to add the bits of one string to the corresponding bits of the

other string (with no carry), and return the result. In English, it reads, "If either the

bit of the first string OR the corresponding bit of the second string are on, then the

resulting bit will be on. Otherwise, the resulting bit will be off."

 padString is used to fill the shorter of the two strings (on the right) so the strings

are the same length when being processed. If no padString is supplied, the

operation works only for the length of the smaller string.

 The sole purpose this function has is to do bit-level manipulation.

 This function is the opposite of BitAnd.

Example 1 The following example will convert a one-character reply from lower-case to

upper case, by virtue of turning on bit 1:
 ResultString = BitOr('y','01000000'B)

 The lower case 'y' is X'A8', or B'10101000'.

 The upper case 'Y' is X'E8', or B'11101000'.

Example 2 The following example will convert all letters of a string to upper case (taking the

above example a step further).
 Sentence = "The Quick Brown Fox Jumps Over The Lazy White Dog"

 ResultString = BitOr(Sentence,,'01000000'B)

 String2 is padded to the length of Sentence with binary '01000000'.

Example 3 The following example does the exact same thing.
 Sentence = "The Quick Brown Fox Jumps Over The Lazy White Dog"

 ResultString = BitOr(Sentence,,'40'X)

 Notice that the coding in this example is a little shorter, but not as clear to the

reader: a binary 01000000 equals a hexadecimal 40. I prefer example 2 to

example 3 because it is clearer.

Page [19]

BitXOr

Purpose: Return a string that is the result of two strings that were logically XOR'd together.

Type: Rexx Function

Syntax: Result = BitXOr(string1,string2,padString)

 String1 and String2 are the strings used in the AND operation.

 padString is a string used for padding

Usage: To XOR two strings is to compare the bits of one string to the corresponding bits

of the other string, one, by one, and return the result of the compare. In English, it

reads, "If the bit of the first string AND the corresponding bit of the second string

are the same, then the resulting bit will be off. Otherwise, the resulting bit will be

turned on.

 padString is used to fill the shorter of the two strings (on the right) so the strings

are the same length when being processed. If no padString is supplied, the

operation works only for the length of the smaller string.

 If you XOR something to itself, the result will be hex zeroes.

 The sole purpose this function has is to do bit-level manipulation.

 You can use this instruction to do some rudimentary character-string encryption.

See the example below.

Example 1 The following example will demonstrate the effect of this function.
 ResultString = BitXOr('11111111'B,'01010101'B)

 Say C2X(ResultString)

 String1: 11111111

 String2: 01010101

 Result: 10101010 (X'AA')

Example 2 This example will further demonstrate the effect of this function.
 ResultString = BitXOr('10101010'B,'01010101'B)

 Say C2X(ResultString)

 String1: 10101010

 String2: 01010101

 Result: 11111111 (X'FF)'

Page [20]

Example 3 This example demonstrates how to encrypt a character string. Use the exact same

instruction to decrypt it.
Sentence = "The quick brown fox jumps over the lazy dog"

Say Sentence

Sentence = BitXOr(Sentence,,'BF'X)

Say Sentence

Sentence = BitXOr(Sentence,,'BF'X)

Say Sentence

Displays:
The quick brown fox jumps over the lazy dog

*:::::::::::: :::::::::::::::::¤:::::::::::

The quick brown fox jumps over the lazy dog

Page [21]

B2X

Purpose: Convert a binary string to a hexadecimal representation

Type: Rexx Function

Syntax: Result = B2X(binarystring)

 Result is the hexadecimal representation of binarystring, which is a string of

zeroes and ones.

Usage: Convert a binary to a hexadecimal number

Example 1 The following exec:
 Say "B2X('11101111')=" B2X('11101111')

 Will display the following:
 B2X('11101111')= EF

Page [22]

Call

Purpose: To invoke, or transfer control to a subroutine (also commonly referred to as a

procedure) or program, expecting to come back.

Type: Rexx Instruction

Syntax: Call subroutine parameters

Call subroutine (parameters)

 Call program

Parameters Any number of variables that are intended to be used by the called subroutine.

Usage: A Call is used to facilitate structured programming. It is widely used to break the

mainline processing up into blocks of code that are referenced by the mainline

section. A lot of the examples illustrate structured programming and the use of

Calls.

 To call a Rexx exec or Clist implicitely, simply issue an "Address TSO"

command, followed by the name of the Rexx exec or Clist, on separate lines.

 A Call is also used to transfer control to a program, with the intention of regaining

control. To call a program in the Linklist, you don’t need to know the exact name

of the library that the program resides in. Instead of issuing a Call, you issue the

following command:

ADDRESS LINKMVS pgmname

Example 1 Call Proc01 /* Call program section 1 */

 Proc01:

 {code}

 {code}

 Return

Example 2 The following code snippet is part of an exec that compares two disk files:
 Address TSO

"Call 'SYS1.LINKLIB(IEBCOMPR)'"

If RC = 0 then

 Say "The modules are identical"

Example 3 The following code snippet is part of an exec that compares two disk files:
Address LinkMVS IEBCOMPR

If RC = 0 then

 Say "The modules are identical"

Page [23]

Example 4 Call a procedure, passing four variables.
Call Proc1(a b c) d

Call Proc1 e f g h

Exit

Proc1: Procedure

 Parse Arg p1 p2 p3

 Say “I am in Proc1. The parameters I was passed are “ p1 p2 p3

Return

The output from this example code will be:
I am in Proc1. The parameters I was passed are A B C D

I am in Proc1. The parameters I was passed are E F G H

Page [24]

Call On

Purpose: Establish a subroutine to handle an error condition

Type: Rexx Instruction

Syntax: Call On condition

See "Trapping Errors" in the Environment section of this manual for a discussion

of this instruction.

Page [25]

Center/Centre

Purpose: To center a string within a larger string

Type: Rexx Function

Syntax: Center(string,length,pad)

Usage: Center string within a larger string of length characters. If pad is present, it will

be used as the pad character. If it is not, spaces will be used.

 This function can be specified as either “Center” or “Centre”.

Example: The following excerpt of a Rexx Exec
 Heading = "Tuesday"

 Field = Center(heading,30,'-')

 Say Field

 will result in
 -----------Tuesday------------

Page [26]

Clist

Purpose: Run a TSO command list the "old" way. This is what was used to accomplish the

functions that Rexx Execs accomplish today.

 Clists are mentioned here only because of their history and effect on today's Rexx

language. I am in no way advocating using them. Anything you could do with a Clist can be

accomplished with a Rexx exec, and usually cleaner.

 Clists and Rexx execs alike are typically stored in a PDS (partitioned dataset). A Clist

library is allocated to the DDName SYSPROC, while a Rexx exec library is allocated to the

DDName SYSEXEC.

Page [27]

Comma

Purpose: To continue a Rexx statement

Example: The following Rexx Exec:
 /* T1 - Example Rexx Program */

 JanuarySales = 100

 FebruarySales = 150

 MarchSales = 5

 AprilSales = 15

 MaySales = 10

 Total = JanuarySales + FebruarySales + ,

 MarchSales + AprilSales + MaySales

 Say 'The total sales = ' Total

 will produce the result "280". Notice the continuation comma after

FebruarySales.

Page [28]

Comments

Purpose: To document an exec, or annotate the lines within.

Syntax: Start with /* and with */. They can span any number of lines, but cannot be nested

(supplied within another set).

Usage: Typically, you would comment each block of code with a comment line preceding

that block of code. If you wish to comment one particular line, code the comment

to the right of that line.

Example: /* This is a Rexx comment */
 Say "Hello, World" /* This is also a Rexx comment */

 A = 1 /* Set the value of A to 1 */

 B = 2 /* Set the value of B to 2 */

 /* C = 3 */ /* This instr was commented out */

 D = 4 /* Set the value of D to 4 */

Page [29]

Compare

Purpose: Compare two strings

Type: Rexx Function

Syntax: Result = COMPARE(string1,string2,pad)

Usage: Compare two strings, and return the number of the position where the inequality

between the two strings starts. If the strings are equal, there is no inequality, and

so the function returns a zero.

 When one string is shorter than the other, it is first padded on the right with the

pad character. The default pad character is a space.

 Characters within quotation marks are treated with respect to their case. An

upper-case letter will not equal a lower-case one.

Example: Result = COMPARE("Apples","Oranges")

 Say Result

 Will yield 1, because the first position is unequal.

 Result = COMPARE("Apples","Apple")

 Say Result

 Will yield 6, because the sixth position of the first string, "s", is unequal to the

sixth position of the second string, which was padded to a blank.

 Result = COMPARE("Apples","Apples ")

 Say Result

 Will yield 0, because the strings after padding are identical.

 Result = Compare("Applesssssssss","Apples","s")

 Say Result

 Will yield 0, because the strings after padding are identical.

Page [30]

Comparison Operators

REXX comparison operations resolve to a 1 if the result of the comparison is true, and a 0 if the

result of the comparison is false. REXX also uses an equality concept called 'strictly equal'.

Two values are 'strictly equal' if they match exactly, including imbedded blanks and the case of

letters. Two values are 'equal' if they don't match exactly, but they resolve to the same quantity

after REXX substitution and evaluation.

The following comparison operators can be used in REXX expressions:

== strictly equal

= equal

\== not strictly equal (can also use not sign, X'5F')

\= not equal (can also use not sign, X'5F')

> greater than

< less than

>< greater than or less than (same as not equal)

>= greater than or equal to

<= less than or equal to

\< not less than

\> no greater than

REXX Comparison Operators Order of Precedence:

\ - (not)

|| - concatenation

& - AND

| && - logical OR and EXCLUSIVE OR

Page [31]

Concatenation

Purpose: To combine two or more strings or literals into one variable.

 One way concatenation is achieved by the use of "Or" bars. These are the vertical

bars that can be found on the keyboard to the right of the +/= key. This is the

preferred way, since it is explicit. If you use this method, all blanks between the

two values that are being concatenated will be suppressed. If you want spaces

between your variables, you must concatenate them as well. See example 1

below.

 Another way to achieve concatenation is to simply put two variables of different

types next to each other (juxtaposition). (Note that juxtaposition is accomplished

by simply not using the "or" bars). Two or more intervening blanks will be

compressed down to one. Again, if you want spaces between your variables, you

must concatenate them as well. See example 2 below.

 In summary, use the "Or" bars if you wish to strip out all intervening spaces. Use

juxtaposition if you wish to keep just 1.

Examples using

"Or" bars:
 Say "Example 1" || "Hello World"

 Say "Example 1" || "Hello World"

 Say "Example 1"||"Hello World"

 All of the above will result in the same thing:
 Example 1Hello World

 Notice that all intervening spaces were removed by Rexx.

 Say "Example 1"||" "||"Hello World"

 will result in:
 Example 1 Hello World

 Notice the intervening space (between "1" and "Hello").

Examples using

juxtaposition:
 Say "Example 2""Hello World"

 Notice that in this example, there is no legitimate concatenation. The quotation

marks intended to define literals (variables of the same type). Instead, Rexx

interpreted this as one string, and by its rules, translated two quotation marks into

one.

 Say "Example 2" "Hello World"

 Say "Example 2" "Hello World"

 Both of the above examples will result in:
 Example 2 Hello World

Page [32]

Condition

Purpose: Retrieve the setting information for the currently trapped REXX condition.

Type: Rexx Function

Syntax: String = CONDITION('code')

 String is the returned setting. Code is supplied to request the type of information.

The default is I.

 Codes:

 C- Return the name of the current condition

 D- Return the descriptive string associated with the condition

 I- Return the name of the actual instruction that was executing when the condition

occurred

 S- Return the status of the condition trap. This will be either ON, OFF, or

DELAY.

Usage: This function is used in error trapping.

Example: In the following exec, we try to add Increase to Salary, neither of which has been

defined:
 Signal On NoValue

 Salary = Salary + Increase

 Say "My salary = " Salary

 exit

 NoValue:

 Say "Undefined variable on line" SIGL

 Say "The current trapped condition is"

 condition("C")

 Say "The variable is" condition("D")

 Say "The name of the instruction is"

 condition("I")

 Say "The instruction is:" sourceline(SIGL)

 Say "The status of the condition trap is"

 condition("S")

 Will result in the following display
 Undefined variable on line 4

 The current trapped condition is NOVALUE

 The variable is SALARY

 The name of the instruction is SIGNAL

 The instruction is: Salary = Salary + Increase

 The status of the condition trap is OFF

Page [33]

Continuation

Purpose: To code an instruction that requires more than one line.

Syntax: Instructions are continued with a comma.

See Comma for documentation on this subject.

Page [34]

Copies

Purpose: Copies a string to itself a specified number of times.

Type: Rexx Function

Syntax: Result = COPIES(string,quantity)

Usage: Set result to quantity sets of string.

Example: Line = COPIES('*',75)

 Will result in the variable "Line" containing 75 asterisks.

Page [35]

C2D

Purpose: Convert a string to its decimal equivalent

Type: Rexx Function

Syntax: Result = C2D(string)

Usage: Internally, the function first converts the string to its hexadecimal equivalent.

Then it converts that hexadecimal value to decimal. It is the inverse of D2C.

Example: result = C2D(" ") /* Two spaces */

 After execution of the previous instruction, result will contain 16448, the decimal

representation of X'4040'

 result = C2D("6")

 result will contain 246, the decimal representation of X'F6'

Page [36]

C2X

Purpose: Convert a string to its hexadecimal equivalent

Type: Rexx Function

Syntax: Result = C2X(string)

Example: result = C2X(" ") /* Two spaces */

 result will contain 4040

 result = C2D("6")

 result will contain F6

Page [37]

DataType

Purpose: This is a Rexx built-in function that will allow you to test to see the type of data a

variable contains. There are two forms of this function.

Type: Rexx Function

Syntax 1: Result = DATATYPE(string)

 If string was a number, result would contain "NUM". Otherwise, it would contain

"CHAR".

Syntax 2: Result = DATATYPE(string,type)

 Using this form, result will contain a one (TRUE) if string corresponds to type.

Otherwise, it will contain a zero (FALSE).

 Types:

Type Description

A Alphanumeric: A-Z, a-z, 0-9

B Binary: 0 or 1 only

D Double-byte character set

L Lower-case letters

M Mixed-case letters

N Number

S Symbol: valid Rexx symbol

U Uppercase letters

W Whole number

X Hexadecimal number: 0-9, A-F

Examples: The following excerpt:
 If datatype("Dave",M) then

 Say "Dave is mixed case"

 else

 Say "Dave is not mixed case"

 will display:
 Dave is mixed case

Page [38]

Date

Purpose: This is a REXX built-in function that will provide you with the current date, in a

variety of different formats.

Type: Rexx Function

Syntax: Result = DATE(option)

 Based on the specification of the Options below, "result" will contain the date in

the corresponding format, if the current date was April 8, 1997:

Usage: see the chart below

Option Meaning Format Example

(blank)

N

European dd Mmm yyyy 8 Apr 1997

B Basedate: Number of complete days

since January 1, of the year 1.

nnnnnn 729121

C Century: Number of days in this

century

nnnnn 35527

D Days: Number of days so far this year nnn 98

E European dd/mm/yy 08/04/97

J Julian date yyddd 97098

M Name of the current month Mmmmmmmm April

O Ordered, suitable for sorting yy/mm/dd 97/04/08

S Ordered, suitable for sorting yyyymmdd 19970408

U USA format mm/dd/yy 04/08/97

W Name of current weekday Dddddddd Tuesday

option is not case sensitive. You can use either upper or lower case.

Examples: If today was April 8, 1997:
 Today's date is date()

 will yield:
 Today's date is 8 Apr 1997

 Today is Date(M)

 will yield:
 Today is April

Page [39]

DelStack

Purpose: To delete the most recently-created TSO stack in preparation for use of it.

Type: TSO Command

Syntax: DELSTACK

Usage: Use this instruction right before you begin adding items to the TSO stack. This

ensures that you don't inadvertently process data that was left on the stack by a

previous program.

 This is typically used in conjunction with the (Parse) Pull instruction.

Page [40]

DelStr

Purpose: Delete characters from a string

Type: Rexx Function

Syntax: Newstring = DELSTR(string,start,length)

Usage: Remove characters from string starting with position start, and for a length of

length. The resulting string will be placed in newstring. The default for length is

the entire remainder of the string.

Example:

Result = DELSTR("ABCDEFGHIJKLMNOPQRSTUVWXYZ",3,20)

 After execution of this instruction, result will contain "ABWXYZ".

Page [41]

DelWord

Purpose: Delete words from a string

Type: Rexx Function

Syntax: Newstring = DELWORD(string,start,quantity)

Usage: Remove quantity words from string starting with word number start. The

resulting string will be placed in newstring.

Example:

Result = DELWORD("FourScore and seven years ago, our fathers ",3,4)

 After execution of this instruction, result will contain

 "FourScore and fathers".

Page [42]

Digits

Purpose: Specify the number of digits that Rexx carries in arithmetic operations (precision).

Type: Rexx Function

Syntax: Numeric Digits n

See Numeric Digits for documentation on this function.

Page [43]

Do

Purpose: Execute a set of instructions, either under the control of a counter variable, or

based upon current program conditions.

Type: Rexx Instruction

Syntax: DO expression

 variable=start

 TO limit

 BY increment

 WHILE expression

 UNTIL expression

 FOREVER

 (one or more statements to execute)

 END variable

Usage: There are several formats of the DO instruction. Each of the operands of the DO

instruction as illustrated above are optional.

 For the sake of explanation, the instructions in between the DO and END are

commonly referred to as a DO Group.

 If no operands are supplied, then the instructions in the DO Group are executed

one time.

expression Any valid REXX expression, but it must resolve to a positive whole number.
 DO 19 Do I = 19

 (one or more instructions) (one or more instructions)
 END End

 Both of the above examples would execute the instructions 19 times.

variable=start

TO limit

BY increment

 Choose a control variable, and assign it a start value. This control variable is

incremented by the BY amount on each iteration of the loop. The loop will stop

when the control variable reaches the limit.
 Do I = 1 TO UpperLimit BY 1

 (one or more instructions)
 End

 In the above example, I is the control variable. It starts with a value of 1, and the

loop continues until I = UpperLimit.

 BY can be a negative number if UpperLimit starts out to be less than the control

variable.

Page [44]

WHILE expression

UNTIL expression

 Continue to perform the instructions WHILE or UNTIL the expression is true.

WHILE and UNTIL have opposite connotations. WHILE will test for a true

condition before the do group is executed. UNTIL will test for a true condition at

the end of the do group. Using UNTIL assures you that the do group will execute

at least one time.
 Times = 1

 StillIn = 'Y'

 Do While StillIn = 'Y'

 Say "I am working on iteration number "Times

 Times = Times + 1

 If Times > 5 then StillIn = 'N'

 End

 Times = 1

 StillIn = 'Y'

 Do Until StillIn = 'N'

 Say "I am working on iteration number "Times

 Times = Times + 1

 If Times > 5 then StillIn = 'N'

 End

 The two examples above will produce identical results:
 I am working on iteration number 1

 I am working on iteration number 2

 I am working on iteration number 3

 I am working on iteration number 4

 I am working on iteration number 5

 Notice, however, that the only difference between the two examples is the

expression following the conjunction (WHILE/UNTIL)

 If you are in doubt as to which conjuntion to use, then apply the KIS principle

(Keep It Simple). Use the one that makes the code easier to understand.

FOREVER Execute the do group continuously, until "told" to stop.

END Variable

 A control variable name can be supplied to an END statement to clarify which

DO group the END statement refers to.
 Do I = 1 to 4

 Do J = 1 to 13

 (one or more instructions)

 End J

 End I

Examples:
 Do I = 1 to 25

 Say "Hello, world!"

 End

 The above example will print the message Hello World! 25 times.

Page [45]

 Do I = 1 to 0

 Say "Hello, world!"

 End

 The above example will print nothing, because 0 < 1.

 Do I = 1 to 10 by 2

 Say "Hello World #"I

 End

 The above example will print:
 Hello World #1

 Hello World #3

 Hello World #5

 Hello World #7

 Hello World #9

 Do I = 1 to 100 by 2 for 5

 Say "Hello World #"I

 End

 The above example will print:
 Hello World #1

 Hello World #3

 Hello World #5

 Hello World #7

 Hello World #9

 (Only five iterations)

 /* Test1 - Example Rexx Program - Rexx EXEC */

 Do Forever

 Say "Tell me your name, or enter 0 to quit"

 Pull Answer

 If Answer = "0" then Leave

 Say "You told me that your name was" Answer"

 End

 The above Rexx exec will echo back whatever you type in, until you enter a zero :
 You told me that your name was HOMER SIMPSON

Caution: Here is a common trap. After a do group completes, your index variable will be

one higher than the limit. In the following example, assume you are traversing an

array of records that you read in from a disk file, and that the disk file contained

114 records.

 Do CurrRecNO = 1 to IPRec.0

 (processing…)

 End

 At this point, CurrRecNO will contain 115, and not 114.

Page [46]

 Drop

Purpose: "Unassign" a variable. This has the effect of converting a variable name to a

literal (in upper case).

Type: Rexx Instruction

Example: The following excerpt from a Rexx exec:
 Greeting = "Merry Christmas"

 Say Greeting

 Drop Greeting

 Say Greeting

 Will yield the following results:
 Merry Christmas

 GREETING

Page [47]

D2C

Purpose: Convert a decimal number to a character.

Type: Rexx Function

Syntax: Result = D2C(number,length)

Usage: Convert the decimal number to its internal hexadecimal format. It is the inverse of

C2D.

 Number must be a whole number or a variable containing a whole number. It

must also be non-negative, unless length is specified.

 Length is the length of the result, and is optional. If Length is not specified, Result

will be left-zero-suppressed. If Number is negative, then Length is required.

Example: The expression displays
 Say D2C(240) 0 (X'F0')

 Say D2C(240,5) 0 (right justified in a 5-

 byte field)

 Say D2C(80) & (X'50')

Page [48]

D2X

Purpose: Convert a decimal number to a hexadecimal value.

Type: Rexx Function

Syntax: Result = D2X(number,length)

Usage: Convert a decimal number to its hexadecimal representation. It is the inverse of

X2D.

 Length- Length of the final result, in characters (optional)

Example: The expression displays
 Say D2X(240) F0

 Say D2C(80) 50

The maximum value that can be converted is 999,999,999.

Page [49]

End

Purpose: Terminate a "DO" loop or block.

See the documentation on Do for more detailed information.

Page [50]

ErrorText

Purpose: This is a REXX built-in function that will return the English language text for an

error code.

Type: Rexx Function

Syntax: Say ErrorText(RC)

 where RC is the error code. Error codes are set by all Rexx errors.

Usage: To report back to the user, in English, what the problem is.

Example:
 /* Test1 - Example Rexx Program - Rexx EXEC */

 Do I = 1 to 20

 Say "Error "I" is "errortext(I)

 End

 The above Rexx exec will display the following output:
 Error 1 is

 Error 2 is

 Error 3 is Program is unreadable

 Error 4 is Program interrupted

 Error 5 is Machine storage exhausted

 Error 6 is Unmatched "/*" or quote

 Error 7 is WHEN or OTHERWISE expected

 Error 8 is Unexpected THEN or ELSE

 Error 9 is Unexpected WHEN or OTHERWISE

 Error 10 is Unexpected or unmatched END

 Error 11 is Control stack full

 Error 12 is Clause too long

 Error 13 is Invalid character in program

 Error 14 is Incomplete DO/SELECT/IF

 Error 15 is Invalid hexadecimal or binary string

 Error 16 is Label not found

 Error 17 is Unexpected PROCEDURE

 Error 18 is THEN expected

 Error 19 is String or symbol expected

 Error 20 is Symbol expected

Page [51]

ExecIO

Purpose: Perform input/output operations.

Type: TSO Command

Syntax: "EXECIO quantity operation ddname seq (options"

 where

 quantity represents the number of records to read or write

 operation DiskR for "read from disk"

 DiskW for "write to disk"

 DiskRU for "read for update"

 ddname The ddname of the file for which I/O is to be performed.

 The file must be allocated by TSO prior to its use.

seq Sequence number of the desired record, for disk read

 operations only

 options STEM stem. FINIS

 STEM is specified when reading records from or writing records to an

array. stem is the "name" of the array. If STEM is not specified, operations

are performed on a disk file instead of an array.

 Specify FINIS to close a disk file when done processing

Usage: If you perform a disk read operation, and you reach end-of-file, RC will be set to

a 2.

Examples:

Read Write Ex # Comments

Disk TSO Stack 1 Read a disk file into the TSO stack

Disk Array 2 Read a disk file into an array

TSO Stack Array 3 Read the TSO stack into an array

TSO Stack Disk 4 Read the TSO stack, write a disk file

Array Disk 5 Read an array, write a disk file

Array TSO Stack 6 Read an array into the TSO stack

Disk Disk N/A Read one disk file; write another:

1) Read disk file into array

2) Write array to disk file

Disk Disk 7 Copy a disk file, one record at a time

Disk Disk 8 Disk update (update a record in place)

Array Array 9 Copy one array to another

TSO Stack TSO Stack N/A (Only one TSO stack is available)

Page [52]

Example 1: Read a disk file into the TSO stack
“Alloc fi(DDIn) Da(user.work) shr"

NewStack

"ExecIO * DiskR DDIn (Finis "

"Free Fi(DDIn)"

And then, to process the stack:
Do while queued() > 0

 Pull OneLine

 Say OneLine

End

Caution: If you read information into the stack, and then leave it there, whether intentionally or

by an error in your Rexx exec, TSO will try to execute it.

Example 2: Read a disk file into an array
"Alloc fi(DDIn) Da(Rexx.exec(TestData)) shr"

"ExecIO * DiskR DDIn (Stem Lines. Finis "

"Free Fi(DDIn)"

And then, to process the array:
Say "The disk file contains " Lines.0 "lines. Here they are:"

Do I = 1 to Lines.0

 Say Lines.I

End

Example 3: Read the TSO stack into an array
/* If the queue is empty, say so and get out */

If queued() < 1 then do

 say "The TSO stack is empty!"

 Exit 16

End

/* Now read the stack into an array */

Lines.0 = queued()

Do I = 1 to queued()

 Pull NewLine

 Lines.I = NewLine

End

And then, to process the array:
Do I = 1 to Lines.0

 Say Lines.I

End

Example 4: Write the TSO stack to disk
If queued() > 0 then do

 "Alloc Fi(DDOut) da(work.data(test2)) shr"

 "ExecIO * DiskW DDOut (Finis "

 "Free Fi(DDOut)"

End

Else

 Say "The queue was empty; no file written!"

Example 5: Write an array to disk

Page [53]

"Alloc Fi(DDOut) da(work.data(test3)) shr"

"ExecIO * DiskW DDOut (Stem Recds. Finis "

"Free Fi(DDOut)"

Example 6: Read an array into the TSO stack
"Alloc Fi(DDIn) da(work.data(test1)) shr"

"ExecIO * DiskR DDIn (Finis "

"Free Fi(DDIn)"

Say "I read "queued()" records into the TSO stack"

DelStack /* Delete this stack when done */

Example 7: Copy a disk file, one record at a time
"Alloc Fi(DDIn) da(work.data(test1)) shr"

"Alloc Fi(DDOut) da(work.data(test6)) shr"

RecsCopied = 0

Do Forever

 "ExecIO 1 DiskR DDIn" /* Read a disk record*/

 If RC = 0 then do /* Not end of file */

 "ExecIO 1 DiskW DDOut" /* Write a disk rec */

 RecsCopied = RecsCopied + 1 /* Count the records copied */

 End

 Else Do /* End of file */

 "ExecIO 0 DiskR DDIn (Finis" /* Close the input file */

 "ExecIO 0 DiskW DDOut (Finis" /* Close the output file */

 Leave

 End

End

"Free Fi(DDIn,DDOut)"

Say "I copied "RecsCopied" records"

Example 8: Disk Update (update a record in place)

This is accomplished by reading a disk record (for update) into the stack, removing it from the

stack into a variable, modifying it (in the variable), putting it back into the stack, and then

writing the record back to disk, from the stack.
"Alloc Fi(DDUp) da(work.data(test1)) OLD"

"NewStack" /* Establish a new stack */

RecsUpdated = 0

"ExecIO 1 DiskRU DDUp 4 " /* Read record number 4 */

Pull Record /* Read stack */

Say "Record number 4 is" Record

Record = left(Record,10)||"* this asterisk is in column 11"

Say "The record was changed to:" Record

Push Record /* Put it back into the stack*/

"ExecIO 1 DiskW DDUp " /* Write the record back */

RecsUpdated = RecsUpdated + 1

"ExecIO 0 DiskW DDUp (Finis" /* Close the I/O file */

"Free Fi(DDUp)"

"DelStack" /* Delete the new stack */

Say "I updated "RecsUpdated" records"

Example 9: Copy one array to another
"Alloc Fi(DDin) da(work.data(test1)) SHR"

RecsCopied = 0

"ExecIO * DiskR DDin (stem Recs. Finis)" /* Read the disk into array */

Say "There are "Recs.0" records in the Recs array"

Page [54]

"Free fi(DDIn)"

Do I = 1 to Recs.0

 Recs2.I = Recs.I

End

Recs2.0 = Recs.0

Say "There are "Recs2.0" records in the Recs2 array"

Do I = 1 to Recs2.0

 Say Recs2.I

End

Page [55]

 Exit

Purpose: Terminate a Rexx exec, and optionally set a return code.

Type: Rexx Instruction

Syntax: Exit ReturnCode

 where ReturnCode is any code you wish to set.

Usage: Typically, the Exit instruction is coded at the end of a Rexx exec's processing, but

it can indeed be used to prematurely terminate a Rexx exec. ReturnCode is the

MVS return code, and can be tested by a calling program (another Rexx exec, for

example), or by JCL.

 To check for charcter strings instead of words, use Index.

Example:
Exit 16 /* Tell the caller I failed */

 Exit 0 /* Tell the caller I processed ok */

Page [56]

Expose

Purpose: Make a local variable available to an external routine

Syntax: PROCEDURE EXPOSE variable

Usage: Typically, when an exec calls a procedure, it passes to the procedure all of the

necessary values. The procedure, by rules of good coding, hides all of its local

variables (by using the "Procedure" statement. If the procedure wants to pass one

of those variables back, it can simply "Expose" the variable.

 The Expose, used from inside a procedure, makes variables defined outside the

procedure available to it.

Example: This is an example of a program that will calculate a bowling average for a five-

game tournament.
 /* Test1 - Example Rexx Program */

 Call GA 157 202 170 160 144

 Say "Your bowling average is " Result

 Say "Your high game was " HighGame

 Say "Your low game was " LowGame

 Exit

 GA:

 Procedure Expose HighGame LowGame

 Arg Game1 Game2 Game3 Game4 Game5

 Total = Game1 + Game2 + Game3 + Game4 + Game5

 BowlAverage = Total / 5

 HighGame = 0

 If HighGame < Game1 then HighGame = Game1

 If HighGame < Game2 then HighGame = Game2

 If HighGame < Game3 then HighGame = Game3

 If HighGame < Game4 then HighGame = Game4

 If HighGame < Game5 then HighGame = Game5

 LowGame = 300

 If LowGame > Game1 then LowGame = Game1

 If LowGame > Game2 then LowGame = Game2

 If LowGame > Game3 then LowGame = Game3

 If LowGame > Game4 then LowGame = Game4

 If LowGame > Game5 then LowGame = Game5

 Return BowlAverage

 In the above example, the first line is a Call to procedure "GA". It passes five

bowling scores.

 The first thing that procedure "GA" does, is make the variables HighGame and

LowGame available to the caller, by Exposing them. Note that if the entire

Procedure statement was removed, all of the variables would be available. In

larger programs, that could be a problem.

See Procedure for more examples.

Page [57]

External

Purpose: Extract the number of terminal buffer or command stack elements that have been

logically typed ahead by the terminal user.

 See PARSE EXTERNAL for documentation on this subject.

Page [58]

Find

Purpose: Return the position of a word/words in a sentence

Type: Rexx Function

Syntax: Result = FIND(sentence,words)

 where result is the word number where words appears in sentence. Result is 0 if

words does not appear (as actual words) in sentence. (By definition, "word" is a

character string enclosed by delimiters.)

Examples:
Position = FIND('Fourscore and seven years ago','years')

 will result in 4. years is the fourth word in the sentence.

Position = FIND('Fourscoreandsevenyearsago','years')

will result in 0. years does not appear as a word in the sentence. (The

sentence contains only one word.)

Say FIND('Fourscore and seven years ago','and seven')

 will result in 2.

Page [59]

Form

Purpose: Returns the current setting of "Numeric Form".

Type: Rexx Function

Syntax: CurrSetting = Form()

 where CurrSetting will contain either "SCIENTIFIC" or "ENGINEERING"

 See also Numeric Form for documentation on this function.

Page [60]

Format

Purpose: To print a number

Type: Rexx Function

Syntax: Result = Format(number,left-of-decimal,right-of-decimal)

 where Result is the formatted representation of number. left-of-decimal denotes

how many digits to display on the left side of the decimal point, padded with

blanks. right-of-decimal denotes how many decimal digits to display on the right

side of the decimal point, zero-filled.

Usage: This function is used to display numbers so they line up with others being

displayed, or to display a number in a certain way.

Example:
 /* Test1 - Example Rexx Program - Rexx EXEC */

 Say "How much money did you have yesterday?"

 Pull YAmount

 Say "How much money do you have now?"

 Pull NAmount

 Diff = NAmount - YAmount

 If Diff > 0 then DiffWord = "Gained"

 else Diffword = "*Lost*"

 Diff = ABS(Diff)

 Say "Yesterday, you had $" Format(YAmount,4,2)

 Say " Now, you have $" Format(NAmount,4,2)

 Say "You "DiffWord" $" Format(Diff,4,2)

 In the above example, when the Rexx exec asked:
 How much money did you have yesterday?

 And you answered: 2

 And then the Rexx exec asked:
 How much money do you have now?

 And then you answered: 1.5

 The Rexx exec would display:
 Yesterday, you had $ 2.00

 Now, you have $ 11.50

 You *Lost* $ 9.50

 Notice how the amounts line up. Without the formatting provided by the Format

function, Rexx would display the following:
 Yesterday, you had $2

 Now, you have $11.5

 You Gained $9.5

Page [61]

Fuzz

Purpose: Returns the current setting of "Numeric Fuzz".

Type: Rexx Function

Usage: This is an inquiry as to this setting: how many low-order digits Rexx should

ignore in comparisons.

See Numeric Fuzz for documentation on this function.

Page [62]

 If

Purpose: Test for certain conditions (via program expressions), allowing action to be taken

based on the results of the test.

Type: Rexx Instruction

Syntax: IF expression THEN If expression THEN DO

 one instruction one or more instructions

 ELSE END

 one instruction ELSE DO

 one or more instructions

 END

Expression: Any valid program expression. If the statement is TRUE, the expression evaluates

to a one. Conversely, if the expression is false, the expression evaluates to a zero.

Rexx uses that value to determine whether it should execute the "THEN"

instructions, or the "ELSE" instructions.

 The operators that can be used in an expression follow:

 > is greater than

 >= is greater than or equal to

 < is less than

 <= is less than or equal to

 /= \= <> is not equal

 = equal: numerically equivalent;

 equivalent when padded with blanks

 = = strictly equal: exactly the same

Examples: The following statements are
 TRUE FALSE

 1 < 2 1 > 2

 2 > 1 2 < 1

 3 <> 4 4 <> 4

 "5b" = "5" "5b" = = "5" (b represents a space)

 .02 = 0.02 .02 = = 0.02

Comparing

strings: Do NOT use "If >" to compare strings. Before a compare is done, high-order

blanks are removed. Therefore, the following statement
If " C4" < "BB3"

will result in false.

Page [63]

You can use the Compare function to compare strings, but only for equality or

inequality. To compare the value of strings, convert each character with C2D first,

as follows:

Do N = 1 to length(OldKey)

 If C2D(substr(OldKey,N,1)) < C2D(substr(NewKey,N,1)) then

Leave

If C2D(substr(OldKey,N,1)) > C2D(substr(NewKey,N,1)) then Do

 Say "The input file is out of sequence!"

 Exit

 End

End

Page [64]

If, Compound

Purpose: To allow more than one expression in an "IF" statement.

Type: Rexx Instruction

Syntax: If expression bo expression bo expression...

 Where:

 expression is as defined above

 bo is a Boolean operator.

Boolean

operator: & All expressions are true

| At least one expression is true. (You must use the "OR" bar; you cannot

use the word "OR"

 && Only one of two expressions is true, and not both

Examples:
 If month = "DECEMBER" | month = "JANUARY" | ,

 month ="FEBRUARY" then

 season = "WINTER"

 CandidateA = "Incumbent"

 CandidateB = "Incumbent"

 If CandidateA = "Incumbent" && ,

 CandidateB = "Incumbent" then

 Say "Input is okay"

 Else

 Say "Dummy! They can't both be incumbents!"

 The previous excerpt of code will call you a dummy, because you told the

program that both candidates were incumbents.

Page [65]

If-Then-Do

Purpose: Execute one or more instructions one time based on some condition.

Type: Rexx Instruction

Syntax: IF expression THEN DO

 END

 where expression is any valid Rexx expression.

Example: If A = B then do

 (one or more instructions)

 End

 In this example, one or more instructions is executed only if A = B.

Page [66]

Index

Purpose: Return the position of a character string in another

Type: Rexx Function

Syntax: Result = INDEX(object, source)

 where result is the position number where source appears in object. Result is 0 if

source does not appear in object.

Note: Index differs from Pos in that object and source are in opposite sequence in the

command.

Examples:
Say Index('Fourscore and seven years ago','and seven')

 will return "11".

Say Index('Fourscoreandsevenyearsago','andseven')

 will return "10".

Page [67]

Insert

Purpose: Copy a string into another string.

Type: Rexx Function

Syntax: Result-string = INSERT(new-string,old-string,where)

 where result-string is the string that will contain the old-string with the new-string

inserted into it. new-string will be inserted into old-string after the where position.

 If where is greater than the length of old-string, then old-string wll be padded

with enough blanks to accomodate the insertion operation.

Examples:
 Say Insert("Apple","Worm",2)

 Will result in
 WoApplerm

 Say Insert("Apple","Worm",7)

 Will result in
 Worm Apple

 (There are three spaces between "Worm" and "Apple").

Page [68]

Interpret

Purpose: To make Rexx process an expression as an instruction; that is, execute

instructions that have been built dynamically.

Type: Rexx Instruction

Syntax: INTERPRET expression1 expression2 ...

Usage: This is one of those highly esoteric Rexx functions. I have never had a need for

this instruction (which is not to say a person never will).

Example:
 1 Instr = "Say"

 2 Var = "Hello World"

 3 Instr Var

 4 Interpret Instr Var

 Line 1 is simply setting the variable Instr to the character string "Say".

 Line 2 is simply setting the variable var to the character string "Hello World".

 Line 3 is being passed to TSO by Rexx, and the result is as follows:
 COMMAND SAY NOT FOUND

 4 *-* Instr Var

 +++ RC(-3) +++

 Line 4 tells Rexx not to pass these commands on to TSO, as it did with line 3, but

to execute them instead. The result is:
 HELLO WORLD

Page [69]

Iterate

Purpose: Pass through the remainder of the instructions in a "DO" loop without executing

them.

Type: Rexx Intruction

Syntax: IF expression THEN ITERATE

 where expression is any valid Rexx expression.

Usage: This is used to "skip" the remainder of a Do group.

Example: /* Test1 - Example Rexx Program - Rexx EXEC */

 Say "Please tell me your name"

 Pull YourName

 Do I = 1 to length(Yourname)

 If I = 1 then iterate

 Say "The "I"th letter of your name is "I

 End

 The above example will print every letter of the name the user types in, except the

first.

See the documentation on Do for more detailed information.

Page [70]

Justify

Purpose: Justify a string to both margins.

Type: Rexx Function

Syntax: NewString = JUSTIFY(string,length)

 where NewString is the newly-created justified string; string is the character string

being justified, and length is the length of NewString.

Usage: A new string is created by justifying the old string to both margins, and adding

blanks between words.

 If the specified length is less than the string, then the new string will be truncated

on the right. Note that this should be viewed only as a side-effect, and not used

purposely. Use the LEFT function instead when this is the desired effect.

 If there is only one word in the string being justified, it will be justified on the

left.

Examples:

 The following excerpt from a Rexx exec:
 NewString = JUSTIFY('Hello, world! I am terrific!',30)

 Say NewString

 will result in NewString containing the following:
 Hello, world! I am terrific!

 within a 30-character field.

 The following excerpt from a Rexx exec:
 NewString = JUSTIFY('Hello, world! I am terrific!',10)

 Say NewString

 will result in NewString containing the following:
 Hello, wor

 Notice that only 10 positions were kept.

Page [71]

Labels

Purpose: To provide a target for the "Signal" instruction.

Syntax: A label is immediately followed by a colon, with no intervening spaces.

Example:
 Endit:

 Exit

 In the above example, "EndIt" is a label.

Page [72]

LastPos

Purpose: Return the position of the last occurrence of one string within another.

Type: Rexx Function

Syntax: Position = LASTPOS(find-string,target-string)

 Where position is the position number of the last occurrence of find-string within

target-string.

Examples: The following Rexx exec:
 XMasGreeting = "We wish you a Merry Christmas"

 Jingle = XMasGreeting || XmasGreeting || ,

 XMasGreeting

 Jingle = Jingle || "And a Happy New Year!"

 Position = LASTPOS("Christmas",Jingle)

 Say Position

will display "79".

XMasGreeting appears 3 times in Jingle (and is 29 chracters long). The last

occurrence of the word "Christmas" appears in the 79th position of Jingle.

Page [73]

Leave

Purpose: Prematurely exit from a "DO" loop.

Type: Rexx Instruction

Syntax: (None)

Usage: “Do loops” can be written in a number of different ways. The example below

illustrates just one of those ways. In this particular example, the only graceful way

of exiting is by use of the Leave instruction.

Example:
/* Test1 - Example Rexx Program - Rexx EXEC */

 Do Forever

 Say "Tell me your name, or enter 0 to quit"

 Pull Answer

 If Answer = "0" then Leave

 Say "You told me that your name was" Answer"

 End

 The above Rexx exec will echo back whatever you type in, until you enter a zero.

Page [74]

Left

Purpose: Return the left "n" positions of a string.

Type: Rexx Function

Syntax: NewString = LEFT(oldstring,quantity)

 Where NewString is the leftmost quantityth positions of oldstring

Example: In the following code,
 First8 = LEFT("ABCDEFGHIJKLMN",8)

 First8 will contain "ABCDEFGH"

See Also: Right

Page [75]

Length

Purpose: Return the length of a literal, string, or string variable

Type: Rexx Function

Syntax: Answer = LENGTH(variable)

Usage: This is a Rexx built-in function that will return the length of a literal, string, or

string variable.

Example:
Answer = length("Merry Christmas and Happy New Year")

 Say Answer

 Would display
 34

Page [76]

LineSize

Purpose: This is a Rexx built-in function that will return the terminal line width minus 1.

Type: Rexx Function

Syntax: Result = LineSize()

Usage: This is an inquiry-only function, and will usually return "79".

Page [77]

ListDSI

Purpose: Retrieve information about a TSO dataset.

Type: TSO external function

Syntax:

 LISTDSI(datasetname diropt)

 or

 LISTDSI(filename type diropt)

 datasetname- the name of the data set about which you want information.

 diropt- an option that indicates whether or not you want PDS directory

information returned.

 DIRECTORY - return directory information. Note that this option must be

specified if you want the PDS-specific variables below to contain the

desired information (SYSADirBlk, for example).

 NODIRECTORY - Do not return directory information. This is the

default.

 filename is the DD name if you pre-allocated the file

 type Specify 'FILE' if the first operand is a DDName instead of a datasetname

Usage: This function will retrieve information about a dataset, and put it into variables.

 The function is said to succeed if it can access the desired dataset information,

and fail if it cannot. The function in reality does not fail, however, because if the

dataset cannot be allocated, LISTDSI sets three variables that say why.

 If the function succeeds, the return code is set to zero, and

 certain variables are set:

 SYSADirBlk For a PDS, this value will contain the number of directory blocks

allocated. For a PDSE or sequential dataset, this value will be

blank.

 SYSALLOC Total space allocation

 SYSBLKSize Block size of the dataset

 SYSBLKSTrk Blocks per track for the unit that this file is on

 SYSCreate Date the dataset was initially created; julian

 date format: yyyy/ddd

 SYSDSName Fully-qualified datasetname

 SYSDSorg DSORG of the dataset

 SYSExDate Expiration date of dataset. 0, if there is none.

 SYSExtents Number of extents used

 SYSKEYLEN Key length. 0 for non-keyed datasets

 SYSLRECL Logical record length

Page [78]

 SYSMembers Number of members in the PDS. This value

 is blank for PDSE's.

 SYSPassword The password assigned to the dataset, or

 "NONE"

 SYSPrimary Primary space allocation quantity

 SYSRACFA Level of RACF protection. Possible values

 are "NONE", "GENERIC", and

 "DISCRETE"

 SYSRECFM Record format of dataset

 SYSRefDate Date the dataset was last referenced; julian

 date format: yyyy/ddd

 SYSSeconds Secondary space allocation

 SYSTrksCyl The number of tracks per cylinder on the

 volume on which this dataset resides

 SYSUDirBlk. For a PDS, this value will contain the

 number of directory blocks used

 SYSUnit Generic unit of the volume, such as "3390"

 SYSUnits Units of allocation: "TRACK", "BLOCK",

 "CYLINDER", etc

 SYSUpdated Whether the dataset was ever updated:

 "YES" or "NO"

 SYSUSED Current space utilization: quantity of

 "SYSUnits" above. "N/A" for PDSE's

 SYSVolume The volume serial number on which this

 dataset resides

 If the LISTDSI function fails, the return code is set to 16, and certain other

variables are set:

 SYSMSGLVL1 Primary, or generic error message

 SYSMSGLVL2 Specific error message

 SYSReason An error number

Page [79]

Examples: Consider the following Rexx Exec:
 /* Test1 - Example Rexx Program - Rexx EXEC */

 RC = listdsi(junk.data)

 If RC = 0 then do

 Say "Allocation was successful."

 Say "SYSADirBlk="SYSADirBlk

 Say "SYSALLOC="SYSALLOC

 Say "SYSBLKSIZE="SYSBLKSIZE

 Say "SYSCreate="SYSCreate

 Say "SYSDSorg="SYSDSOrg

 Say "SYSDSName="SYSDSName

 Say "SYSExtents="SYSExtents

 Say "SYSExDate="SySExDate

 Say "SYSKEYLEN="SYSKEYLEN

 Say "SYSLRECL="SYSLRECL

 Say "SYSMembers="SYSMembers

 Say "SYSPassword="SYSPassword

 Say "SYSPrimary="SYSPrimary

 Say "SYSRefDate="SYSRefDate

 Say "SYSRACFA="SYSRACFA

 Say "SYSRECFM="SYSRECFM

 Say "SYSSeconds="SYSSeconds

 Say "SYSTrksCyl="SYSTrksCyl

 Say "SYSUnit="SYSUnit

 Say "SYSUnits="SYSUnits

 Say "SYSUpdated="SYSUpdated

 Say "SYSUSED="SYSUSED

 Say "SYSVolume="SYSVolume

 End

 Else do

 Say "Return code = " RC

 Say "SYSReason="SYSReason

 Say "SYSMSGLVL1="SYSMsgLvl1

 Say "SYSMSGLVL2="SYSMsgLvl2

 End

 Using the above exec, I performed a LISTDSI on an existing PDS, and the Rexx

exec reported as follows:
 Allocation was successful.

 SYSADirBlk=

 SYSALLOC=15

 SYSBLKSIZE=32720

 SYSCreate=1997/104

 SYSDSorg=PO

 SYSDSName=DGRUND.WORK.DATA

 SYSExtents=1

 SYSExDate=0

 SYSKEYLEN=0

 SYSLRECL=80

 SYSMembers=

 SYSPassword=NONE

 SYSPrimary=15

 SYSRefDate=1997/107

 SYSRACFA=GENERIC

 SYSRECFM=FB

 SYSSeconds=1

Page [80]

 SYSTrksCyl=15

 SYSUnit=3390

 SYSUnits=TRACK

 SYSUpdated=YES

 SYSUSED=N/A

 SYSVolume=PCF011

 Using the same exec, I performed a LISTDSI on an non-existent PDS, and the

Rexx exec reported as follows:
Return code = 16

SYSReason=0005

SYSMSGLVL1=IKJ58400I LISTDSI FAILED. SEE REASON CODE IN VARIABLE SYSREASON.

SYSMSGLVL2=IKJ58405I DATA SET NOT CATALOGUED. THE LOCATE MACRO RETURN CODE IS

0008

Page [81]

Literals

Purpose: Literals exist so variables can represent an unchanging value.

 Rexx supports literals of a number of different types.

Usage: Typically, a literal is one that is enclosed by either a set of quotation marks or

apostrophes.

 "HELLO WORLD" and

 'HELLO WORLD' represent the same character string.

 Literals can be numeric, character, hexadecimal, and binary. "FOUR" is a

character literal; "4" is a numeric literal.

 The reason I say "typically", is because that is not always the case. (This is

probably one of my biggest complaints about Rexx. I feel that if it was more

stringent, it would be easier to figure out and explain.)

  A character literal doesn't have to be enclosed. If it isn't, it is changed to all

upper case.

  A character literal that is not enclosed can be converted to a variable by using it

on the left side in an assignment statement. (You will get a syntax error if you try

to assign a literal that is enclosed).

 Consider this example. The following excerpt is from a Rexx Exec:
 Say "Hello, World" /* Character string */

 Say Hello World /* Two literals */

 World = "Dave" /* Make "World" a variable */

 Say Hello World

 will yield the following results:
 Hello, World

 HELLO WORLD

 HELLO Dave

 A good rule of thumb to follow is always enclose literals. That way, if a character

string appears in your output, you can bet it's an (uninitialized) unused variable.

Page [82]

Logical Operators

REXX supports the following logical (Boolean) comparison operators:

& AND - returns a 1 (true) if both comparisons are true, and a 0 (false) otherwise - performs a

logical AND operation

| OR - returns a 1 (true) if at least one comparison of several is true, and a 0 (false) otherwise -

performs a logical or operation

&& EXCLUSIVE OR - returns a 1 (true) if ONLY one of a group of comparisons is true, and a

0 (false) otherwise - performs a logical exclusive OR function

\ NOT - returns the reverse logical value for an expression - returns false if expression resolves

to true, and true if the rexpression resolves to false

Page [83]

Math

 Rexx performs math whenever it can recognize arithmetic operators. The valid Rexx

operators are as follows:

Operator Function

+ Add

- Subtract

* Multiply

/ Divide

% integer divide

// remainder of division

** Exponentiation

() group items

Usage
 The primary operations (+, -, *, /) are obvious, so not much further discussion is needed

here.

%- Integer

Divide Any remainder is dropped

//- Remainder

of Division Yields the remainder in a division expression.

 The following excerpt from a Rexx exec:
 "EXECIO" 1 "DiskW SYSUT2"

 OpCount = OpCount + 1

 If OpCount // 1000 = 0 then

 Say OpCount "records written so far..."

 will print a message line for every 1000th record written. This, of course, is useful

in a long-running program.

**- Exponentation

() Operations within expressions to make them take precedence over normal

precedence.

Page [84]

Max

Function: Return the highest of a series of numbers.

Type: Rexx Function

Syntax: HighNum = MAX(num1, num2...)

Usage: A maximum of 20 numbers can be provided.

Example:
 Say Max(1,3,5,17,9,6,4)

 will yield "17" (without the quotation marks)

Min

Purpose: Return the lowest of a series of numbers.

Type: Rexx Function

Syntax: LowNum = MIN(num1, num2...)

Usage: A maximum of 20 numbers can be provided.

Example:
 Say Min(8,3,5,17,9,6,4)

 will yield "3" (without the quotation marks)

Page [85]

Msg

Purpose: Change or inquire as to the current TSO "MSG" setting.

Type: TSO external function

Syntax: Setting = MSG(on/off)

 where setting is the current setting, before it is changed by what is in the

parentheses;

 on/off is either "ON", "OFF", or nothing.

Usage: The TSO "MSG" setting indicates whether TSO messages are printed during the

execution of a Rexx exec or not. Specify the command with "ON" to turn

message displays on, "OFF" to turn message displays off, and a null parameter

(just the parentheses with nothing in them) to display the current setting.

Example 1: In the following example,
 1 Say Msg()

 2 MSetting = Msg(Off)

 3 Say MSetting

 4 Say Msg()

 1 will display the current TSO message setting, either "ON" or "OFF"

 2 will capture the current TSO MSG setting into the variable MSetting, and then

set the setting to "OFF", regardless of what it was

 3 will display the variable MSetting

 4 will display the new current setting, which will be "OFF"

Example 2: In the following example,
 1 Say Msg()

 2 Say "About to allocate the first time..."

 3 "Allocate FI(dummy) DA(junk2.data) shr"

 4 Junk = Msg(Off)

 5 Say "About to allocate the second time..."

 6 "Allocate FI(dummy) DA(junk2.data) shr"

 1 will display the current TSO message setting, either "ON" or "OFF"

 2 tells the user that we are about to issue a TSO command

 3 allocates the file, if possible

 4 turns the MSG setting off

 5 tells the user again that we are about to issue a TSO command

 6 allocates the file again, if possible

 The dataset junk2.data does not exist, so each attempt at allocating it will fail.

Line 3 above will issue a message because the TSO MSG setting is on. Line 6

above would have issued a TSO message, but the TSO MSG setting was off.

Page [86]

NewStack

Purpose: Establish a new TSO stack

Type: TSO command

Syntax: NewStack

Usage: To tell Rexx that from here on, all stack operations are to be conducted on a

newly-established TSO stack, instead of the one that existed when the instruction

started. The "old" stack is left alone and unharmed by further operation, until a

DelStack is issued to discard this newly-established stack.

See also: DelStack

Page [87]

NOP

Purpose: No operation

Type: Rexx instruction

Syntax: NOP

Usage: Allow you to use an instruction that performs no action in a place where an

instruction (of any kind) is required.

Example: The following example is coded this way to avoid complicated negative logic.
 If A = 1 | A = 2 then

 Nop /* do nothing */

 Else

 Say "answer was incorrect"

Page [88]

Numeric

Purpose: Set certain rules for Rexx's handling of numbers. It controls the waya Rexx exec

carries out arithmetic operations.

Type: Rexx instruction

Syntax: Numeric function

 Where function is either Digits, Form, or Fuzz.

Digits controls the precision to which arithmetic operations are evaluated.

Form directs which form of exponential notation Rexx uses of the result of

arithmetic operations

Fuzz controls how many digits, at full precision, are ignored during a numeric

comparison operation.

 In many cases, these three functions work together to produce the desired results.

Numeric Digits

Purpose: Controls the precision to which arithmetic operations are evaluated.

Syntax: Numeric Digits NoOfDigits

NoOfDigits - Defaults to 9, and must be larger than the current NUMERIC

FUZZ setting. There is no practical limit to the value for DIGITS,

but keep in mind that higher values result in added processing

time.

 Example: The following Rexx exec snippet:

 Numeric Digits 5 ; Say 1234.56 * 1

Numeric Digits 4 ; Say 1234.56 * 1

Numeric Digits 3 ; Say 1234.56 * 1

Numeric Digits 2 ; Say 1234.56 * 1

Numeric Digits 1 ; Say 1234.56 * 1

Will produce:

1234.6

1235

1.23E+3

1.2E+3

1E+3

Page [89]

Numeric Form

Purpose: Directs which form of exponential notation Rexx uses for the result of arithmetic

operations

Syntax: Numeric Form mode

 Where mode is either SCIENTIFIC or ENGINEERING

 SCIENTIFIC notation adjusts the power of ten so there is a single non-zero digit

to the left of the decimal point.

 ENGINEERING notation causes the power of ten to be expressed as a multiple of

3.

Example: The following Rexx exec snippet:

 Numeric Digits 2

Numeric Form Scientific

Say 123.45 * 1

Numeric Form Engineering

Say 123.45 * 1

 Will produce:

1.2E+2

120

Page [90]

Numeric Fuzz

Purpose: Controls how many (low-order) digits, at full precision, are ignored during a

numeric comparison operation. The exact way this function works is actually

slightly complicated.

Syntax: Numeric Fuzz ToIgnore

ToIgnore - Defaults to 0. It must be smaller than the current setting of

NUMERIC DIGITS.

Usage: During the numeric comparison, the numbers are subtracted under a precision of

DIGITS minus FUZZ digits, and the difference is then compared to 0.

Example 1: The following Rexx exec snippet:

Value1 = 133456

Value2 = 123457

Numeric Digits 6

Numeric Fuzz 5

If Value1 = Value2 then Say "They are equal"

Else Say "They are NOT equal"

Will produce:

They are equal

Digits (6) minus Fuzz (5) equals 1. That is the number of digits from the left that

are compared. Since the first digit in each of Value1 and Value2 are identical, this

comparison is true.

Example 2: The following Rexx exec snippet:

Value1 = 133456

Value2 = 123457

Numeric Digits 6

Numeric Fuzz 5

If Value1 = Value2 then Say "They are equal"

Else Say "They are NOT equal"

Numeric Fuzz 4

If Value1 = Value2 then Say "They are equal"

Else Say "They are NOT equal"

Will produce:

They are equal

Digits (6) minus Fuzz (4) equals 2. That is the number of digits from the left that

are compared. The first two digits of Value1 (13) are compared to the first two

digits of Value2 (12). This comparison is obviously false.

Page [91]

Page [92]

Operators

Arithmetic Operators- See the subject entitled "Math"

Comparison Operators- See the subject entitled "Compare"

Logical Operators- See the subject entitled "Logical Operators"

Concatenation Operators- See the subject entitled "Concatenation"

REXX Operator Precedence

The following list shows order of precedence for ALL REXX operators:

1) Expressions in parenthesis are evaluated first

2) prefix operators ==> -, + \

3) exponentiation ==> **

4) Multiplication and division in this order ==> *,/,%,//

5) Addition and Subtraction ==> + and -

6) concatenation ==> || or blank

7) comparison operators ==> ==,=,\==,\=,>,<,><,>=,<=,\<,\>

8) logical AND ==> &

9) logical OR and EXCLUSIVE OR ==> |, &&

Page [93]

OutTrap

Purpose: To turn on or off the capturing of TSO output.

Type: TSO external function

Syntax: ReturnCode = OUTTRAP(stem.,max)

 ReturnCode = OUTTRAP('ON'/OFF')

 where stem. is the name of the array into which the TSO output will be built, and

max is the maximum number of records that will be written. Note that stem must

end in a period. ReturnCode will be 0 if the function succeeds.

Usage: OUTTRAP("ON"): Turn on capturing of TSO messages and output, simply

"swallow" it. Nothing wil be displayed at the terminal.

 OUTTRAP("OFF"): Stop the capture of TSO messages and output, in which case

they will start being displayed at the terminal again.

 OUTTRAP(stem.,max): Turn on capturing of TSO messages and output, and

write it all to an array named stem. max is the maximum number of records that

will be written. Specify "*" to process all records, although that is the default.

Example: In the following example, we are trying to write all of the member names of a

PDS to an array. As a byproduct of the TSO command that we are using, some

unwanted information is written to the array as well.
 Dummy = OutTrap("output_line.","*")

 "LISTd work.data m"

 NumLines = OutPut_Line.0

 Say NumLines "lines were created"

 Dummy = OutTrap("OFF")

 Do I = 0 to NumLines

 Say "Output_Line."I"="Output_Line.I

 End

 After execution of this exec, the array called Output_Line looks like this:
 Output_Line.0=8

 Output_Line.1=DGRUND.WORK.DATA

 Output_Line.2=--RECFM-LRECL-BLKSIZE-DSORG

 Output_Line.3= FB 80 32720 PO

 Output_Line.4=--VOLUMES--

 Output_Line.5= PCF011

 Output_Line.6=--MEMBERS--

 Output_Line.7= PROG01

 Output_Line.8= PROG02

 There are only two members in the PDS, but the array contains all of the other

output from the ListDS command. It's really simply to process around it, though,

like this:
 Do I = 7 to Output_Line.0

Page [94]

Overlay

Purpose: Move characters over (on top of) other characters.

Type: Rexx Function

Syntax: NewString = OVERLAY(source,object,position)

Usage: This function replaces the characters in object with the characters in source,

starting at position. If object is less than position, it is padded with blanks.

Example 1: This is what happens when you use the command the wrong way:
 NewString = OVERLAY("ABCDEFGHIJK",'X',4)

 Say Newstring

 NewString will contain:
 X ABCDEFGHIJK

Example 2: The following example decides, based on the day of the week, whose turn it is to

make the coffee.
 Say "Today is " Date(W)

 CoffeeMaker = "Undecided" /* default */

 If Date(W) = "Monday" then CoffeeMaker = "Glenda"

 If Date(W) = "Tuesday" then CoffeeMaker = "Alice"

 If Date(W) = "Wednesday" then CoffeeMaker = "Thom"

 If Date(W) = "Thursday" then CoffeeMaker = ,

 "Brucey"

 If Date(W) = "Friday" then CoffeeMaker = "Chuck"

 Message = "The person in charge of making coffee

 -> today is"

 Position = length(Message) + 2

 Say OVERLAY(Coffeemaker,Message,Position)

Page [95]

Parse

Purpose: Take data from one of several origins, optionally break it up, and then drop it into

variables.

Type: Rexx Instruction

Syntax: PARSE [UPPER] origin varname delimiter varname delimiter...

 UPPER- Converts the data to upper case. This is the default.

 origin- Places where REXX can get the data from:

 ARG- Command line

 VAR- A variable

 PULL- The TSO stack

 SOURCE- TSO info on how the program was executed

 VALUE- Literal

 EXTERNAL- Terminal

 VERSION- Version of Rexx interpreter

 varname- One or more variables

 delimiter- Delimiters for parsing the origin data

Note: The words "Parse Upper" are optional. When Rexx sees any of these origins, it

assumes "Parse Upper".

Upper: "Upper" is optional, but it is the default. To not take the default, simply specify

"Parse" without the word "Upper".

Action: Rexx will move variables one at a time from the implied origin into the variables

specified after the origin keyword.

 If there are more origin parameters than variables, Rexx will put all of the

remaining parameters into the last variable. The last variable can be a period, in

which case extra origin parameters will simply be discarded. I don't recommend

this, however. Letting these drop into a variable would not hurt. You can always

choose to ignore them, but the program will require no modification here if you

later choose to look at these parameters.

 If there are more variables than there are origin parameters, the variables are set to

spaces.

 Delimiters break the input up and cause it to be processed separately, under the

guidelines specified above.

ARG: Take input from the command line. This is information that the user supplied to

the exec when entering the command. See examples EX01 and EX02 below.

VAR: Take input from a variable. See example EX03 below.

Page [96]

 A period is used as a placeholder. If you don’t wish to use all of the arguments

that are supplied to an EXEC, you can specify a period instead of a variable name,

and that argument will be ignored.

PULL: Take input from the TSO stack. Use PULL to prompt the user for information.

(Whatever the user types in is moved into the TSO stack.) See example EX04

below.

SOURCE: Take input from information that the system (TSO) maintains about your REXX

program. It returns nine values. They are:

 1. Operating System. In this case, it would be TSO.

 2. How the program (Rexx exec) was called. It will be either of COMMAND,

SUBROUTINE, or FUNCTION.

 3. Name of the EXEC

 4. DDName of command library; either SYSEXEC or SYSPROC

 5. Datasetname containing the EXEC. It will be '?' if the command was invoked

implicitly.

 6. The name that the command was invoked by. It will be "?" if the command was

invoked implicitly.

 7. The initial address environment; generally TSO, MVS, or ISPEXEC

 8. Environment: TSO, MVS, or ISPF

 9. Reserved. Will be '?'

 See example EX05 below.

VALUE: Take input from a literal. This function can be used to parse things like the current

time. See example EX06 below.

EXTERNAL: Take input from the terminal.

varname: One or more variable names

Delimiters: Delimiters to determine where origin data is divided. These delimiters can be

literals, variables, or column numbers.

Literal

Delimiters: Break input up at a specific character. See example EX03 below.

Variable

Delimiters: Break input up at a specific variable

Column number

Delimiters: Break input up under the control of column numbers.

Examples: I used the origins that I did for the sake of clear explanation only. The following

examples apply to all of the origins.

Page [97]

 In the following Rexx program,
/* EX01 - REXX Example Program */

Parse Upper Arg Var1 Var2 Var3 Var4 Var5

Say Var1 ; Say Var2 ; Say Var3 ; Say Var4 ; Say Var5

 If the command line read
 Ex01 a b c d e

 Rexx would display
 A

 B

 C

 D

 E

 If the command line read
 Test1 a b c d e f g h

 Rexx would display
 A

 B

 C

 D

 E F G H

 If the command line read
 Test1 a b

 Rexx would display
 A

 B

 (with three blank lines following)

 If the command line read
 Test1 "My name is Dave"

 Rexx would display
 "MY

 NAME

 IS

 DAVE"

 (blank line)

 In the following Rexx program,
 /* Ex02 - REXX Test Program */

 Parse Arg Var1 Var2 Var3 Var4 Var5

 Say Var1 ; Say Var2 ; Say Var3 ; Say Var4 ; Say Var5

 If the command line read
 EX02 a b c d e

 Rexx would display
 a

 b

 c

 d

Page [98]

 e

 In the following Rexx program,
 /* EX03 - REXX Test Program */

 Parse upper arg datasetname

 Parse var datasetname PDSName "(" MemName ")" junk

 Say "The command line parameter was " DatasetName

 Say "The PDSName is " PDSName

 Say "The MemberName is " MemName

 Say "The junk variable is " junk

 If the command line read
 EX03 user.session.jcl(copyfile)

 Rexx would display
The command line parameter was USER.SESSION.JCL(COPYFILE)

The PDSName is USER.SESSION.JCL

The MemberName is COPYFILE

 In the following Rexx program,
 /* EX04 - REXX Example Program */

 Newstack

 Say "Please tell me your first and last name"

 Pull FirstName LastName

 Say "You told me your first name was" FirstName

 Say "You told me your last name was" LastName

 DelStack

 If the command line read
 EX04

 Rexx would display
 Please tell me your first and last name

 And if you replied
 George Washington

 Rexx would display
 You told me your first name was GEORGE

 You told me your last name was WASHINGTON

 In the following Rexx program,
 /* EX05 - REXX Example Program */

 Parse Upper Source Stuff

 Say Stuff

 Rexx would display something like
 TSO COMMAND EX05 SYSEXEC ? ? TSO ISPF ?

 In the following Rexx program,
 /* EX06 - REXX Example Program */

 Parse Value Time() with Hrs ':' Mins ':' Secs

 Say Hrs; Say Mins; Say Secs

 If the time of day was 10:28:07, Rexx would display
 10

 28

 07

Page [99]

 /* EX07 - REXX Example Program */

 Parse Version Me

 Say Me

 would display something like the following:
 REXX370 VERS 3.48 01 May 1992

Page [100]

Pos

Purpose: This is a Rexx built-in function that will allow you to determine if a character is

present in a string or variable, by returning its position in the string.

Type: Rexx Function

Syntax: Position = POS(source,object)

 where position is the position of source within object. Position will be zero if

source does not apear in object.

Note: Index differs from Pos in that object and source are in opposite sequence in the

command.

Example: We will use the following Rexx exec for our examples:
 /* Test1 - Check for Coffeemakers - REXX exec */

 Arg Person

 CoffeeMakers = "GLENDA ALICE THOM BRUCEY CHUCK

 DAVE "

 If Pos(Person,Coffeemakers) > 0 then

 say Person "is indeed one of our CoffeeMakers"

 Else

 say Person "does not drink coffee with us"

 The following command:
 Test1 Alice

 will yield the following message:
 ALICE is indeed one of our CoffeeMakers

 because POS contains 8

 The following command:
 Test1 Randy

 will yield the following message:
 RANDY does not drink coffee with us

 because POS contains 0

 The following command:
 Test1 Al

 will yield the following message:
 AL is indeed one of our CoffeeMakers

This is an error, not in the Rexx exec, but in our usage of it. We are checking only

for the existence of the character string, and not whether that charcter string is a

whole word.

Page [101]

Procedure

Purpose: Establish that the current block of code is a Procedure, and thereby hide all local

variables

Type: Rexx Instruction

Syntax: PROCEDURE

Usage: This statement is needed only when you wish to hide the variables that appear in

the local block of code. You can then "unhide" some of them by using the

Expose function.

 Variables defined outside the procedure are not visible from within the procedure.

They need to be passed to the procedure.

 Conversely, variables defined inside a procedure are not visible from outside the

procedure, unless they are “exposed”.

This is an example Rexx Exec that demonstrates some variable usage and handling.

/* Define the same variable outside and inside a procedure */

/* The one inside the procedure is unique. */

Procvarl = "This is a global variable"

Say "Before call to Procl. ProcVarl=" ProcVarl

Call Procl

Say "After call to Procl. ProcVarl=" ProcVarl

Say

/* Define the same variable outside and inside a procedure, */

/* and expose that variable from within the procedure. */

/* The one inside the procedure takes precedence. */

Procvar2 = "This is a global variable"

Say "Before call to Proc2. ProcVar2=" ProcVar2

Call Proc2

Say "After call to Proc2. ProcVar2=" ProcVar2

Say

/* Define a variable outside the procedure, and try to use */

/* it inside the procedure. */

/* The one inside the procedure does not see the one */

/* outside the procedure. */

Procvar3 = "This is a global variable"

Say "Before call to Proc3. ProcVar3=" ProcVar3

Call Proc3

Say "After call to Proc2. ProcVar3=" ProcVar3

Say

Page [102]

Exit

Procl: procedure

 ProcVarl = "This is a local variable"

 Say "I am in Procl. Procvarl=" Procvarl

Return 0

Proc2: procedure expose ProcVar2

 ProcVar2 = "This is a local variable"

 Say "I am in Proc2. Procvar2=" Procvar2

Return 0

Page [103]

Proc3: procedure

 Say "I am in Proc3. Procvar3=" Procvar3

Return 0

The output from execution of this exec:

Before call to Procl. ProcVarl= This is a global variable

I am in Procl. Procvarl= This is a local variable

After call to Procl. ProcVarl= This is a global variable

Before call to Proc2. ProcVar2= This is a global variable

I am in Proc2. Procvar2= This is a local variable

After call to Proc2. ProcVar2= This is a local variable

Before call to Proc3. ProcVar3= This is a global variable

 I am in Proc3. Procvar3= PROCVAR3

After call to Proc3. ProcVar3= This is a global variable

Page [104]

Prompt

Purpose: Change the setting of, or inquire as to the current setting of the TSO "Prompt"

setting.

Type: TSO external function

Syntax: Answer = PROMPT("ON"|"OFF"|)

Usage: Rexx PROMPT functions only if the TSO PROFILE PROMPT setting is "ON"

)as opposed to "PROFILE NOPROMPT").

 The "ON" parameter will cause Rexx to allow TSO commands to prompt for

necessary information.

 The "OFF" parameter will force TSO commands to bypass the normal step of

stopping and asking for missing information.

 In both of the above cases, the function will first return the current setting.

 The empty parameter will simply return the current setting.

Example: The following exec is actually the same process run twice; once after turning the

TSO Profile Prompt setting ON, and once turning it off. During each process, we

will turn the Rexx Prompt setting on, issue the TSO "Delete" command, and then

turn the Rexx Prompt setting off, and then issue the same TSO delete command.

If you get confused, just remember that there is a difference bewteen the TSO

Prompt command and the Rexx Prompt function.
 "Profile Prompt"

 Say "Here is the demo with the TSO prompt ON"

 Dummy = prompt("ON")

 Say "Rexx Prompt is " prompt()

 "Newstack"

 Delete

 "Delstack"

 Dummy = prompt("OFF")

 Say "Rexx Prompt is " prompt()

 "Newstack"

 Delete

 "Delstack"

 "Profile NoPrompt"

 Say "Here is the demo with the TSO prompt OFF"

 Dummy = prompt("ON")

 Say "Rexx Prompt is " prompt()

 "Newstack"

 Delete

 "Delstack"

Page [105]

 Dummy = prompt("OFF")

 Say "Rexx Prompt is " prompt()

 "Newstack"

 Delete

 "Delstack"

 This exec will display:
 Here is the demo with the TSO prompt ON

 Rexx Prompt is ON

 ENTER ENTRY NAME -

 At which point, the command waits for a datasetname to be entered. I entered

"A".

 Continuing the display...
 ERROR QUALIFYING GRUND.A

 ** DEFAULT SERVICE ROUTINE ERROR CODE 20, LOCATE

 ERROR CODE 8

 LASTCC=8

 Rexx Prompt is OFF

 MISSING ENTRY NAME+

 LASTCC=12

 MISSING ENTRYNAME TO BE DELETED, PASSWORD OPTIONAL

 Here is the demo with the TSO prompt OFF

 Rexx Prompt is ON

 MISSING ENTRY NAME+

 LASTCC=12

 MISSING ENTRYNAME TO BE DELETED, PASSWORD OPTIONAL

 Rexx Prompt is OFF

 MISSING ENTRY NAME+

 LASTCC=12

 MISSING ENTRYNAME TO BE DELETED, PASSWORD OPTIONAL

 In the above exec, I tried the following 4 scenarios:

 TSO REXX Prompting

 PROMPT PROMPT Occurred?

 ON ON YES

 ON OFF NO

 OFF ON NO

 OFF OFF NO

 In each case where prompting did not occur, TSO went along its merry way,

trying to delete a dataset whose name wasn't supplied. Naturally, it failed.

Page [106]

Pull

Purpose: Get input from TSO

Type: Rexx Instruction

Syntax: Pull variable1 variable2...

Usage: This command will first look at the TSO stack. If the TSO stack is empty, the

command will prompt the user.

Example:
 1 NewStack

 2 Push "Hello #1"

 3 Pull Answer1

 4 Say "I just learned" Answer1

 5 Pull Answer2

 6 Say "I just learned" Answer2

 In this example,

 1 Establishes a new stack

 2 Puts the phrase "Hello #1" onto the stack

 3 Gets (and removes) that phrase from the stack

 4 Displays I just learned HELLO #1

 5 Prompts the user for more input, since the stack is now empty

 6 Displays whatever the user just typed in.

See Parse and Stack for documentation on this function.

Page [107]

Push

Purpose: Move data to the TSO stack.

Type: Rexx Instruction

Syntax: PUSH variable1 variable2 ...

Usage: Put things in the "input queue". This instruction works in LIFO format: last in,

first out. It operates like a pile of plates in a diner. The plates put on top push the

others down, and the first ones pulled off are the last ones put on.

 Queue does the same thing as Push, but in FIFO format.

Example 1:
 1 NewStack

 2 Say "I have "queued()" lines on the stack"

 3 Push "A" "B" "C"

 4 Say "I have "queued()" lines on the stack"

 5 Pull var1

 6 Say "I pulled "Var1" off of the stack"

 7 Say "I have "queued()" lines on the stack"

 Line 1 established a brand new TSO stack to play with.

 Line 2 tells us how many lines are on the stack. This should be "zero", since we

just started a new stack.

 Line 3 pushed three variables (one line) onto the stack.

 Line 4 again tells us how many lines are on the stack. This should be "one".

 Lne 5 pulls those three variables off the stack, so now the stack again contains

zero lines.

 Line 6 tells us the variables that the exec pulled off the stack

 Line 7 again tells us how many lines are on the stack. This should be "zero".

Example 2:
 Newstack

 Say "I have "queued()" lines on the stack"

 Push "A" "B" "C"

 Push "D" "E" "F"

 Say "I have "queued()" lines on the stack"

 Pull var1

 Say "I have "queued()" lines on the stack"

 Say "I pulled "Var1" off of the stack"

 Pull var1

 Say "I pulled "Var1" off of the stack"

 Say "I have "queued()" lines on the stack"

 In this example, "A B C" is pushed onto the stack. Then "D E F" are pushed onto

the stack. Since Push is a LIFO instruction, the program will first pull "D E F" off

the stack, then "A B C".

Page [108]

QStack

Purpose: Determine the number of data stacks currently in existence

Type: TSO Command

Syntax: QStack

Usage: To see if the exec (or subroutines) had created any data stacks

See also: NewStack, DelStack

Example: The following Rexx exec snippet:

 "QStack" /* Returns a 1 in RC */

 saverc = RC /* Save the number of stacks */

 Say "The number of data stacks is " saverc

 "NewStack" /* Create a new data stack */

 "NewStack" /* Create a new data stack */

 "QStack" /* Returns a 3 in RC */

 saverc = RC /* Save the number of stacks */

 Say "The number of data stacks is " saverc

 Will display:

The number of data stacks is 1

The number of data stacks is 3

Page [109]

Queue

Purpose: Move data to the TSO stack.

Type: Rexx Instruction

Syntax: Queue variable1 variable2 ...

Usage: Put things in the "input queue". This instruction works in FIFO format: First in,

first out.

 Push does the same thing as Queue, but in LIFO format.

Example 1:
 1 NewStack

 2 Say "I have "queued()" lines on the stack"

 3 Queue "A" "B" "C"

 4 Say "I have "queued()" lines on the stack"

 5 Pull var1

 6 Say "I pulled "Var1" off of the stack"

 7 Say "I have "queued()" lines on the stack"

 Line 1 established a brand new TSO stack to play with.

 Line 2 tells us how many lines are on the stack. This should be "zero", since we

just started a new stack.

 Line 3 pushed three variables (one line) onto the stack.

 Line 4 again tells us how many lines are on the stack. This should be "one".

 Lne 5 pulls those three variables off the stack, so now the stack again contains

zero lines.

 Line 6 tells us the variables that the exec pulled off the stack

 Line 7 again tells us how many lines are on the stack. This should be "zero".

Page [110]

Queued

Purpose: This is a Rexx built-in function that will return the number of lines that are

currently available in the TSO stack.

Type: Rexx Function

Syntax: NumOfLines = Queued()

Example:
 If Queued() > 0 then DelStack

 In the above example, if there are any lines on the TSO stack, we will delete

them.

Page [111]

Quotation Marks/Apostrophes

Purpose: To enclose a literal (character string).

Syntax: " " or ' '

Usage: Literals are enclosed by a matched set of either apostrophes or quotation marks.

They can be used interchangeably, but must be used in matched pairs.

 A character string containing apostrophes can be enclosed by quotation marks, or

vice-versa.

 The Rexx instruction: Yields:
 Say "Hello, it's me!" Hello, it's me!

 Say 'Hello, it"s me!' Hello, it"s me!

 (Although the punctuation is incorrect)

 A character string containing apostrophes can be enclosed by apostrophes only if

each of the contained apostrophes is represented by two.

 The Rexx instruction: Yields:
 Say 'Hello, it's me!' Error: unmatched quote

 Say 'Hello, it''s me!' Hello, it's me!

 The first example (enclosing apostrophes in quotation marks) is cleaner, and is the

recommended method.

 Enclosing an expression causes Rexx to bypass the command, and pass it right

through to the environment; in our case, TSO.

 Example:
 "Say 'Hello, World' "

 Would display
 COMMAND SAY NOT FOUND

 8 *-* "Say 'Hello' "

 +++ RC(-3) +++

Page [112]

Random

Purpose: Return a random number

Type: Rexx Function

Syntax: Pick = RANDOM(min,max,seed)

 where pick is the number selected; min and max is the range of numbers,

inclusive, from which the function can pick; and seed is the random number seed;

it is optional.

Usage: This function will pick a number that is commonly referred to as pseudo-random.

Specifying the same seed will produce the same random number.

 Random

Example: This is an example of an Exec that thinks it can guess what the current

temperature is.
 MoNum = substr(Date(U),1,2)

 If Monum = 1 then Do; Low = 0; High = 55; end

 If Monum = 2 then Do; Low = 0; High = 60; end

 If Monum = 3 then Do; Low = 15; High = 65; end

 If Monum = 4 then Do; Low = 35; High = 80; end

 If Monum = 5 then Do; Low = 45; High = 85; end

 If Monum = 6 then Do; Low = 50; High = 90; end

 If Monum = 7 then Do; Low = 55; High = 95; end

 If Monum = 8 then Do; Low = 55; High = 95; end

 If Monum = 9 then Do; Low = 50; High = 90; end

 If Monum = 10 then Do; Low = 30; High = 85; end

 If Monum = 11 then Do; Low = 10; High = 75; end

 If Monum = 12 then Do; Low = 0; High = 60; end

 Temp = Random(Low,High)

 Say "The temperature right now is " Temp

Page [113]

RC

Purpose: Special variable set by TSO commands

Usage: This variable can be used to test the success/failure of a TSO command.

Example 1:
 1 Say "This is a typical Rexx instruction"

 2 Say "Return Code = "RC

 3 Junk

 4 Say "Return Code = "RC

 5 Say "Hello, World"

 6 Say "Return Code = "RC

 7 Say A = B + C

 8 Say "Return Code = "RC

 Line 1 will simply display a message.

 Line 2 wil display Return Code = RC. Line 1 was a Rexx instruction, and did not

set RC. Since RC was never set (in this exec), it is stil undefined.

 Line 3 is not a Rexx instruction, so it is passed on to TSO, and the following

displays:
 COMMAND JUNK NOT FOUND

 3 *-* Junk

 +++ RC(-3) +++

 Line 4 displays: Return Code = -3

 Lines 5-6 display:
 Hello, World

 Return Code = -3

 Return code was set to -3 before, and is unchanged because these are both valid

Rexx instructions.

 Line 7 displays:
 7 +++ Say A = B + C

 Error running T1, line 7: Bad arithmetic conversion

 The Rexx exec stops here, so line 8 never executes.

Page [114]

Result

Purpose: Special TSO variable set by the Return instruction

Usage: This variable is set by the Return instruction after a subroutine is called. If the

subroutine returns an expression, Result will contain that expression. If not,

Result is dropped (becomes uninitialized).

Example: The following exec:
 Call Proc1

 Say "Result is " Result

 Call Proc2

 Say "Result is " Result

 Exit

 Proc1:

 Return "abc"

 Proc2:

 Return

 Will display:
 Result is abc

 Result is RESULT

Page [115]

Return

Purpose: Go back to a caller

Type: Rexx Instruction

Syntax: RETURN variable

Usage: Use this command to return to a calling program, and optionally pass a variable.

The variable that is passed back will be moved into the "RESULT" variable for

use by the caller.

Example 1:
 Call Multiply 2 3

 Say "The answer is "Result

 Exit

 Multiply:

 Arg Factor1 factor2

 Product = Factor1 * Factor2

 Return Product

 The above example illustrates the use of the Return function and the Result

variable. You could have specified Product instead of Result, but that would have

violated good programming techniques, and depending how the subroutine is

coded, may not give you the desired results. The illustrated way always will.

Page [116]

Reverse

Purpose: Reverses the order of the characters of a string.

Type: Rexx Function

Syntax: Result = REVERSE(string)

Usage: Use this function to turn a string around.

Example 1: The following Rexx EXEC:
 Message = "Happy birthday to you"

 NewMsg = REVERSE(Message)

 Say "The original message was " Message

 Say "The new message is " NewMsg

 Will display:
 The original message was Happy birthday to you

 The new message is uoy ot yadhtrib yppaH

 The following Rexx EXEC:
 Message = "Able was I ere I saw Elba"

 NewMsg = REVERSE(Message)

 Say "The original message was " Message

 Say "The new message is " NewMsg

 Will display:
 The original message was Able was I ere I saw Elba

 The new message is ablE was I ere I saw elbA

 I used a palindrome here to illustrate a point: the case of the letters will remain the

same as they were.

Page [117]

Right

Purpose: Return the right "n" positions of a string.

Type: Rexx Function

Syntax: NewString = RIGHT(oldstring,quantity)

 Where NewString is the rightmost quantityth positions of oldstring

Example: In the following code,
 First8 = RIGHT("ABCDEFGHIJKLMN",8)

 First8 will contain "GHIJKLMN"

See Also: Left

Page [118]

Say

Purpose: Display strings, literals, and numeric values

Type: Rexx Instruction

Syntax: Say anything

Usage: This command is probably the most commonly-used Rexx command. It is used to

display information to the user at the terminal. You can mix literals and variables

into the object that you are displaying.

Example:
Say "Hello, World. My name is Computer. What is your name?"

Pull YourName

Say "So, you say your name is" YourName"."

Say "How old are you, "YourName"?"

Pull YourAge

Say "Hmmmm..." YourAge", huh? That's pretty good. I used to be",

 YourAge "once, too!"

Say "Goodbye, "YourName", and have another wonderful "YourAge" years!"

The above example first asks you for your name, and then your age.

Page [119]

Select

Purpose: Rexx's implementation of the structured programming CASE construct.

Type: Rexx Instruction

Syntax: SELECT

 WHEN expression THEN instruction

 WHEN expression THEN instruction

 WHEN expression THEN instruction

 WHEN expression THEN instruction

 OTHERWISE instruction

 END

Example:
 SELECT

 WHEN WeekDay = 1 THEN DOWWord = "Sunday"

 WHEN WeekDay = 2 THEN DOWWord = "Monday"

 . . . /* The rest of the days of the week */

 OTHERWISE DOWWord = "Invalid"

 END

Page [120]

Semi-Colon

Purpose: To stack instructions on a line

Syntax: instruction ; instruction ; instruction

Usage: Use this command to place more than one instruction on a line, especially when

they are "short" instructions. Stacking instructions on a line can compact the body

of a routine so you can see more of it at one time. Sometimes, this can be a help

instead of a deterrent.

Example 1: (Instruction not stacked)
 Temperature = Random(1,100)

 If temperature < 20 then do

 Weather = "Brutal"

 Like = "heck no!"

 End

 If temperature > 19 & temperature < 32 then do

 Weather = "Cold"

 Like = "no"

 End

 If temperature > 31 & temperature < 50 then do

 Weather = "Nippy"

 Like = "not really"

 End

 If temperature > 49 & temperature < 71 then do

 Weather = "so-so"

 Like = "so-so"

 End

 If temperature > 70 & temperature < 82 then do

 Weather = "warm"

 Like = "nice"

 End

 If temperature > 81 then do

 Weather = "hot"

 Like = "yes!"

 End

 Say "The temperature now is "temperature,

 " and the weather is "Weather"."

 Say "Do I like it? "Like

 In the above example, there are two short instructions in every If-then-do group.

They each take two lines.

Page [121]

Example 2: (Instructions stacked)
 Temperature = Random(1,100)

 If temperature < 20 then do

 Weather = "Brutal"; Like = "heck no!"

 End

 If temperature > 19 & temperature < 32 then do

 Weather = "Cold"; Like = "no"

 End

 If temperature > 31 & temperature < 50 then do

 Weather = "Nippy"; Like = "not really"

 End

 If temperature > 49 & temperature < 71 then do

 Weather = "so-so"; Like = "so-so"

 End

 If temperature > 70 & temperature < 82 then do

 Weather = "warm"; Like = "nice"

 End

 temperature > 81 then do

 Weather = "hot"; Like = "yes!"

 End

 Say "The temperature now is "temperature,

 " and the weather is "Weather"."

 Say "Do I like this weather? "Like

 This is the same program as Example 1, except that we stacked the instructions on

one line, and we saved 6 lines in the program. That made this routine more

compact, and we can therefore see more of the program on one screen. This

technique, more importantly, did not compromise the appearance or readability of

this code.

Page [122]

Sigl

Purpose: Special TSO variable that contains the line number of the last instruction that

caused a jump to a label.

Usage: This variable is very useful for tracing and debugging purposes. It can tell you

exactly where you came from, without having to "drop breadcrumbs".

Example: The following exec:
 Say "Hello. I am line 3"

 Say "Hello. I am line 4"

 Call Proc01

 Say "Hello. I am line 6"

 Signal Tag01

 Tag01: Say "Hello. I am line 9; Sigl="Sigl

 Exit

 Proc01:

 Say "Hello. I am line 13; Sigl="Sigl

 Return

 Will display:
 Hello. I am line 3

 Hello. I am line 4

 Hello. I am line 13; Sigl=5

 Hello. I am line 6

 Hello. I am line 9; Sigl=7

Page [123]

Sign

Purpose: Return the arithmetic sign of a number

Type: Rexx Function

Syntax: Result = sign(number)

Usage: This function returns a 1 if the number is positive, and a negative 1 if it is

negative. It will return a zero if it is neither (a zero is considered neither positive

or negative).

Example 1:
 Number = -3

 Say "The sign of this number is " sign(Number)

 Number = -1

 Say "The sign of this number is " sign(Number)

 Number = 0

 Say "The sign of this number is " sign(Number)

 Number = +1

 Say "The sign of this number is " sign(Number)

 Number = 2

 Say "The sign of this number is " sign(Number)

 Number = +3

 Say "The sign of this number is " sign(Number)

 The above example yields the following displays:
 The sign of this number is -1

 The sign of this number is -1

 The sign of this number is 0

 The sign of this number is 1

 The sign of this number is 1

 The sign of this number is 1

Page [124]

Signal

Purpose: To unconditionally branch (transfer control) to another part of the program.

 This instruction lends to "spaghetti code", and should therefore be used only when

it would make the code clearer. "Bailing out" of a complicated routine is a good

example.

Type: Rexx Instruction

Example: Signal Endit /* An error has occurred */

 Endit:

 Say "Program ending now due to error"

 Exit

Note: I have found the signal instruction to be unreliable in some cases. In these cases, for some

reason, the signal statement simply fails to function. When this happens, the use of switches to

control processing is recommended. An example follows.

 ErrorSw = 'N' /* Initialize the error switch */

 Call Proc01 /* Perform routine 01 */

 If ErrorSw = 'N' then

 Call Proc02 /* Perform routine 02 */

 If ErrorSw = 'N' then

 Call Proc03 /* Perform routine 03 */

If an error occurred in either Proc01 or Proc02, instead of performing a "Signal" to the end of the

program, you could simply set the error switch to 'Y', and then conditionally perform the rest of

the program routines upon return.

Page [125]

Signal On

Purpose: Turn on error trapping.

Syntax: Signal On condition

See "Trapping Errors" in the Environment section of this manual for a discussion

of this instruction.

Page [126]

SourceLine

Purpose: Return the text of the program source

Type: Rexx Function

Syntax: Result = SOURCELINE(number)

Usage: This function will return the actual program text of the line number supplied.

Example 1:
 1 /* Test1 - Rexx Example Program */

 2 Say "Hello World #1"

 3 Say "Hello World #2"

 4 Say "Hello World #3"

 5 Say "Hello World #4"

 6 Say "Hello World #5"

 7 Say "Hello World #6"

 8 Say "Hello World #7"

 9 Say "Line three of the program is "SourceLine(3)

 The above example will display the following:
 Hello World #1

 Hello World #2

 Hello World #3

 Hello World #4

 Hello World #5

 Hello World #6

 Hello World #7

 Line three of the program is Say "Hello World #2"

Page [127]

Space

Purpose: Adds blanks to or removes blanks from between words in a string.

Type: Rexx Function

Syntax: NewString = SPACE(OldString,quantity)

 where NewString is the result of putting quantity blanks between every word in

OldString.

Usage: If quantity is "0", this function will remove all blanks from the string. The

function does not take into consideration how many spaces are already between

words. It sets the string to the quantity you supply. Therefore, this instruction can

be used to nicely format a sentence.

Example 1:
 Greeting = "Merry Christmas to one and all"

 NewGreeting = space(Greeting,0)

 Say NewGreeting

 NewGreeting = space(Greeting,1)

 Say NewGreeting

 NewGreeting = space(Greeting,2)

 Say NewGreeting

 NewGreeting = space(Greeting,3)

 Say NewGreeting

 This exec will display the following:
 MerryChristmastooneandall

 Merry Christmas to one and all

 Merry Christmas to one and all

 Merry Christmas to one and all

Page [128]

 Stack

Purpose: Serve as an "input queue" for TSO commands in a Rexx Exec

Usage: The Stack (or TSO stack, as it is more commonly called) is a storage area used to

hold TSO commands that are about to be executed. These TSO commands were

moved into the stack by either an individual keying them in at the terminal, or by

a Rexx program.

 When a Rexx exec needs information, it first looks for it on the stack. If the stack

is empty, TSO will prompt the user (see example 1).

 If you wish to read TSO commands directly, and bypass the stack, use Parse

External.

 More than one TSO stack can be created. The number of TSO stacks is limited

only by the core available. Only the current TSO stack, though, is the one that is

the subject of operations.

 The TSO stack can be shared by subroutines and by called programs.

 If you read information into the stack and leave it there, then after your Rexx exec

ends, TSO will try to execute each item in the stack (see example #2).

 Several commands operate on or manipulate the stack:

 Push Adds items to the stack

 Pull Removes items from the stack

 Queue Adds items to the stack

 NewStack Establishes a new stack

 DelStack Deletes the current (newest) stack

 ExecIO Reads/writes a file or array into/from the stack

 Each of the items above is documented in this manual in detail as their own

subjects.

Example 1:
 1 NewStack

 2 Push "Hello #1"

 3 Pull Answer1

 4 Say "I just learned" Answer1

 5 Pull Answer2

 6 Say "I just learned" Answer2

 In this example,

 1 Establishes a new stack

 2 Puts the phrase "Hello #1" onto the stack

 3 Gets (and removes) that phrase from the stack

 4 Displays I just learned HELLO #1

 5 Prompts the user for more input, since the stack is now empty

Page [129]

 6 Displays whatever the user just typed in.

Example 2:
 NewStack

 Push "Hello #1"

 Push "Hello #2"

 Push "Hello #3"

 Push "Hello #4"

 Push "Hello #5"

 This example will display the following:
 COMMAND HELLO NOT FOUND

 COMMAND HELLO NOT FOUND

 COMMAND HELLO NOT FOUND

 COMMAND HELLO NOT FOUND

 COMMAND HELLO NOT FOUND

Page [130]

 Strip

Purpose: Removes leading or trailing spaces from a string.

Type: Rexx Function

Syntax: NewString = STRIP(OldString,option,char)

 where NewString is the result of removing char from OldString based on the

setting of option.

Usage: The function will remove from the old string:

 Leading char (option = "L"),

 Trailing char (Option = "T"), or

 Leading and Trailing char (Option = "B")

 The third parameter, char, specifies the character to be removed. If specified, it

must be exactly one character long. The default is blank.

Example 1:
 Greeting = " Happy New Year to you "

 NewGreeting = Strip(Greeting,"L")

 Say NewGreeting

 NewGreeting = Strip(Greeting,"T")

 Say NewGreeting

 NewGreeting = Strip(Greeting,"B")

 Say NewGreeting

 This exec will display the following results:
 Happy New Year to you

 Happy New Year to you

 Happy New Year to you

Page [131]

SubCom

Purpose: Poll TSO to see if a particular environment is available.

Type: TSO command

Syntax: Subcom environment

Usage: This command can be used to test to see if an environment is available before

issuing commands to it. For example, before you invoke the ISPF editor on a

dataset, it may be a good idea to first check to see if the system has ISPF available

(although this would be a good assumption).

 This is the strongest reason that I could come up with for using this command,

which probably demonstrates why I have never used it in any of my execs. In

certain situations, there may indeed be a good reason to use it.

See also: Address

Example:
"SubCom TSO"

If RC = 0 then Say "TSO is available"

Else Say "TSO is not available; RC=" RC

"SubCom ISPF"

If RC = 0 then Say "ISPF is available"

Else Say "ISPF is not available; RC=" RC

"SubCom Junk"

If RC = 0 then Say "Junk is available"

Else Say "Junk is not available; RC=" RC

"SubCom ISPEXEC"

If RC = 0 then Say "ISPEXEC is available"

Else Say "ISPEXEC is not available; RC=" RC

"SubCom ISREDIT"

If RC = 0 then Say "ISREDIT is available"

Else Say "ISREDIT is not available; RC=" RC

"SubCom CMS"

If RC = 0 then Say "CMS is available"

Else Say "CMS is not available; RC=" RC

The above exec will display the following:

TSO is available

ISPF is not available; RC= 1

Junk is not available; RC= 1

ISPEXEC is available

ISREDIT is available

CMS is not available; RC= 1

Page [132]

SubStr

Purpose: This is a Rexx built-in function that will return a portion of a string or variable.

Type: Rexx Function

Syntax: var = SUBSTR(string,begin,length)

 var Any variable name

 string The object string (can be a literal also)

 begin The beginning position of the string you wish to refer to

 length Then length of the string you wish to refer to

Example: Section = substr(alphabet,4,5)

 Where alphabet is a string containing all of the letters of the alphabet

 After this instruction executes, the variable SECTION will contain "DEFGH"

Page [133]

SubWord

Purpose: Returns a subset of a sentence

Type: Rexx Function

Syntax: NewString = SUBWORD(OldString,start,quantity)

 where NewString is the result of copying quantity words from OldString, starting

at word number start.

Usage: Extract a fixed number of words from a sentence.

Example 1:
 Phrase = "Fourscore and seven years ago, our

 fathers..."

 Extract = SUBWORD(Phrase,2,3)

 Say Extract

 Extract = SUBWORD(Phrase,7,3)

 Say Extract

 This example will display the following:
 and seven years

 fathers...

Page [134]

Symbol

Purpose: Tells if a character string is a variable, literal, or neither

Type: Rexx Function

Syntax: Result = SYMBOL(charstring)

Usage: According to "the book", this function will test a character string, and return one

of the following:

 VAR If the character string is a valid variable name

 LIT If the character string is a valid literal

 BAD If neither of the above

 I have found that this function will return only "LIT" or "BAD", based on whether

the supplied character string can comprise a valid variable name.

Example:
 Result = SYMBOL(Myname)

 Say Result

 Myname = 4

 Result = SYMBOL(Myname)

 Say Result

 Result = SYMBOL("**")

 Say Result

 Will display:
 LIT

 LIT

 BAD

Page [135]

SYSDSN

Purpose: Return the status of a datasetname

Type: TSO external function

Syntax: Result = SYSDSN(datasetname)

Usage: This function can tell you whether a dataset appears in the catalogue, whether a

member name appears in a PDS, etc. It is not quite as comprehensive as LISTDSI.

 Consult the following chart for possible results.

Result Reason

DATASET NOT FOUND The datasetname was not in the catalogue

ERROR PROCESSING REQUESTED

DATASET

INVALID DATASETNAME The datasetname was invalid: Length > 44

chars, invalid chars, etc.

MEMBER NOT FOUND Looking for a member of a PDS, but it

was not found

MEMBER SPECIFIED, BUT DATASET

IS NOT PARTITIONED

Looking for a member of a PDS, but the

dataset is not a PDS

MISSING DATASETNAME SYSDSN(): no datasetname supplied

OK Disk dataset, in catalogue

PROTECTED DATASET

UNAVAILABLE DATASET

VOLUME NOT ON SYSTEM Tape dataset, in catalogue

See also: LISTDSI

Example:
 MyDSN = “’”dsn”’”

 RC = SYSDSN(MyDSN)

 If RC = “OK” then

 Say MyDsn “was found”

 Else

 Say RC

 end

Page [136]

 SYSVAR

Purpose: Return information about the system

Type: TSO external function

Syntax: Result = SYSVAR(infoRequest)

Usage: This function can tell you the current TSO user signed on to the system, the name

of the logon proc being used, and many other things.

 Consult the following chart for a list.

InfoRequest Description

SYSCPU The number of CPU seconds used in this TSO session so far

SYSENV Thre environment you are currently executing in:

FORE for foreground; BACK for background (via JCL)

SYSHSM This will be the HSM release number. If HSM is not available, this

will be blank.

SYSICMD The name of the command or Rexx exec

SYSISPF ACTIVE if the ISPF dialogue manager is active. Test this variable in

your exec if it depends on ISPF services being available.

SYSLRACF RACF level, or spaces if not available

SYSLTerm Number of lines available on the terminal screen.

SYSNEST YES if executed from another exec or CLIST; NO if executed from

TSO.

SYSPCmd The most recently-executed TSO command from this exec. It will be

EXEC if there was none.

SYSPREF The prefix that TSO puts in front of unqualified datasetnames.

SYSPROC The name of the procedure that was used to log on to TSO

SYSRACF AVAILABLE, NOT AVAILABLE, or NOT INSTALLED

SYSSCmd The most recently-executed TSO sub-command. This is "the book"

explanation, but I find it to be always blank.

SYSSRV How many SRM units were used so far

SYSTSOE TSO/E level

SYSUID The TSO UserID of the currently-logged on user

SYSWTerm Number of columns available on the terminal screen. This is

LINESIZE+1

Page [137]

Time

Purpose: This is a REXX built-in function that will provide you with the current time, in a

variety of different formats.

Type: Rexx Function

Syntax: Result = Time(option)

 Based on the specification of the Options below, "result" will contain the time in

the corresponding format, if the current time was 1:05pm (plus a few seconds).

Option Meaning Format Example

(blank) normal (same as 'N') hh:mm:ss 13:05:13

C Civil hh:mm xm 1:05pm

E Elapsed (seconds and microseconds) sssssssss.mm

mmmm

111111.222222

H hour, 24-hour format hh 13

L long hh:mm:ss.ddd

d

13:05:13.090191

M Number of minutes since midnight nnnn 785

N normal hh:mm:ss 13:05:13

R Reset elapsed time 0

S Number of seconds since midnight nnnnn 47113

If you use an unsupported option, for example "A", you will see an error message similar to the

following:

 5 +++ Say "The time now is " Time(A)

Error running AskTime, line 5: Incorrect call to routine

This command can also be used for measuring elapsed time. The first time this command is

issued with either the 'E' or 'R' option, the elapsed time counter is started. Every subsequent

issuance of the command with either of these options will return the elapsed time since the first

issuance of Time('E') or the last issuance of Time('R'). Issuing the command with option 'R' will

reset the elapsed time counter, but only after it returns the elapsed time.

The following example demonstrates the use of elapsed time.
Dummy = Time(E) /* Start time */

Say "I am waiting for you to hit enter!"

Pull Answer

Duration = Time('E')

Say "Point1:" Duration "seconds!"

Duration = Time('E')

Say "Point2:" Duration "seconds!"

Duration = Time('R')

Say "Point3:" Duration "seconds!"

Duration = Time('E')

Say "Point4:" Duration "seconds!"

Say "Point5:" Time('E') "seconds!"

Page [138]

This exec will display something like this:
I am waiting for you to hit enter!

Point1: 1.200962 seconds!

Point2: 1.203493 seconds!

Point3: 1.205070 seconds!

Point4: 0.001185 seconds!

Point5: 0.002150 seconds!

Page [139]

Trace

Purpose: List instructions as they are executed; variables as they are set

Type: Rexx Function

 See “Debugging” for a discussion on this subject

Page [140]

Translate

Purpose: Convert characters to other characters

Type: Rexx Function

Syntax: Result = TRANSLATE(ObjectString,String2,String1)

Usage: Convert all occurrences of ObjectString that appear in String1 to the

corresponding character in String2.

Example 1: I find this a difficult command to conceptualize, to explain, or to remember, so a

very detailed example is necessary here.

 Say TRANSLATE("ABCDEFGHIJ","1234567890","DAVE")

 Would result in:
 2BC14FGHIJ

 Because:

 String1 = "DAVE______"

 String2 = "1234567890"

 ObjectString = "ABCDEFGHIJ"

 Result = "2BC14FGHIJ"

 In ObjectString, the first character, A, appears in String1. So that A in

ObjectString is replaced by 2, which is the character in String2 that corresponds to

the character in String1.

 The next character in ObjectString does not appear in String1, so it is not

converted. The same applies to the third.

 The fourth character in ObjectString (D), however, does appear in String1. So that

D in ObjectString is replaced by 1, which is the character in String2 that

corresponds to the character in String1.

 To visualize how this command works, and how to make it work for you, just lay

String1 on top of String2, like I have here.

Page [141]

Example 2: In this scenario, it turns out that the English teacher mistakenly gave the class the

wrong test: it was one grade level too high. So now, she wants to push everyone's

grade up one notch, instead of making everyone re-take the test. First, let's lay out

String 1 and String 2:

 String1 = 'BCDF'

 String2 = 'ABCD'

 Then code the Rexx exec, as follows:
 OldGrades = "BBCCBDFDDFD"

 NewGrades = TRANSLATE(OldGrades,"ABCD","BCDF")

 Say "The old grades were" OldGrades

 Say "The new grades are " NewGrades

 which will result in:
 The old grades were BBCCBDFDDFD

 The new grades are AABBACDCCDC

Example 3: This command converts 1 to A and 2 to B
 String = Translate(String,”AB”,”12”)

Page [142]

 Trunc

Purpose: Return a number with a specified number of decimal places

Type: Rexx Function

Syntax: NewNumber = TRUNC(Number,DecimalPlaces)

 where NewNumber is Number with DecimalPlaces decimal places.

Usage: This command could have been called Decimal Places, because that applies more

than Trunc. The command will add or remove positions based on the specification

of decimal places.

Examples:
 Say Trunc(1.12345,0)

 Say Trunc(1.12345,4)

 Say Trunc(1,4)

 Will display:
 1

 1.1234

 1.0000

Page [143]

 Upper
Purpose: Convert a character string to upper case

Caution: This is NOT a function. It can NOT be used on the right side of an

expression.

Type: Rexx Instruction

Syntax: UPPER variable1 {variable2} {variable3}...

Examples: fname='George'; lname='Bush'

Upper fname lname

Say lname ',' fname /* displays "BUSH , GEORGE" */

See also: Parse Upper Arg

Page [144]

UserID

Purpose: Return the TSO UserID of the resource who is currently logged on to the system

Type: Rexx Function

Usage: This is commonly used to determine access priviledges.

Examples:
 Say "Your userID is" UserID()

 Could display:
 Your userID is DGRUND01

Page [145]

Value

Purpose: Returns the contents of a variable after resolving it. The main purpose for this

function is to resolve a dynamically-created variable.

Type: Rexx Function

Syntax: NewVar = VALUE(variable)

Usage: There is a subtle difference between using VALUE(variable) and just the variable

itself. Value will convert the contents of a variable to upper case while resolving

it.

Simple example:
 Name = "Dave"

 Say "My name is "value(Name)

 Say "My name is "Name

 The above exec will display:
 My name is DAVE

 My name is Dave

Example of resolving a dynamically-created variable:

 In one particular Rexx exec, I create ten arrays, named Array01, Array02, ... Array10. We

wish to perform the same processing on each array, so we use a subroutine, or what is more

commonly known as a procedure.

Page [146]

Variables

Purpose: To retain values for use later in the program. A variable can hold any type of

value: character, numeric, hex, binary, etc.

Syntax: A variable must start with a character (never a number), and certain special

characters. The rest of the variable can contain alphabetic characters, numbers,

and certain special characters.

 Some special characters that can appear in a variable name are as follows:

 @ __ # $!

 Some special characters that can not appear in a variable name are as follows:

 % &

 For any other special characters, you're on your own. Try it out; it can't hurt.

 A variable name can be up to 250 characters long.

Usage: A variable in Rexx does not get declared. It is assigned a value by using it on the

left side of an assignment statement, or with the use of certain Rexx instructions.

A variable is not a variable until it is given a value. Note that until a variable is

given a value, it is a literal. If a variable's value is removed (with the "Drop"), it is

then converted back to a literal.

 If you happen to see a variable name appear in your output unexpectedly, there is

a good chance that you misspelled either it, or the one that you initialized.

Example: My_name = "John Smith"

Page [147]

Variables, Compound

Purpose: To act as a variable, with an added benefit. The same variable name can be used

to contain any number of similar values. This is a very powerful feature of Rexx,

and is very simple to implement. This feature is commonly used to construct an

array.

Syntax: Same as regular variables, but with a period and a suffix added to the end.

Usage: Simply assign a value to the nth element of the array. The "0th" element is used to

contain the number of elements in the array.

Example: The following excerpt from a Rexx exec:
 Name.1 = "Mary"

 Name.2 = "Joe"

 Name.3 = "Alice"

 Name.4 = "Smokey"

 Name.0 = 5 /* Establish no. of elements */

 Say "There are "name.0" elements in this array"

Do I = 1 to Name.0

 Say Name.I

 End

 Will yield the following results:
 Mary

 Joe

 Alice

 Smokey

 NAME.5

Page [148]

Verify

Purpose: Tells whether certain characters are contained in a given character string.

 Note: It is not looking at words. It is looking at individual characters.

Type: Rexx Function

Syntax: Result = VERIFY(FindString,ObjectString)

 Result is the first position of FindString that does not appear in ObjectString.

Usage: If Result is zero, then all of FindString appears somewhere in ObjectString. Both

strings are case-sensitive: a lower-case letter will not match an upper-case, and

vice-versa.

Example:
 Say Verify('I','TEAM')

 Say Verify('Scienc',"ConSciencious")

 Say Verify('fat',"indefatigable")

 Say Verify('hillary','hilarious')

 Will display:

 1 (There is no "I" in "TEAM")
 0

 0

 7

Page [149]

Word

Purpose: Returns the nth word of a string.

Type: Rexx Function

Syntax: Result = WORD(phrase,n)

 Result is the nth word of phrase.

Usage: If n is greater than the number of words in the phrase, result will contain blanks. If

n is zero, the function will err out.

Example:
 Say Word("Merry Christmas and Happy New Year",2)

 Say Word("Merry Christmas and Happy New Year",7)

 Say Word("Merry Christmas and Happy New Year",0)

 Will display:
 Christmas

 3 +++ Say Word("Merry Christmas and Happy New Year",0)

Error running Test1, line 3: Incorrect call to routine

Page [150]

WordIndex

Purpose: Return the character position of a word in a string

Type: Rexx Function

Syntax: Position = WORDINDEX(string,n)

 where Position is the character number of the nth word in string.

Usage: This function will return the character position where a particular word starts in a

string.

Example:
 Answer = WordIndex("Merry Christmas and Happy New Year",5)

 Say Answer

 Would display
 27

 The 5th word of the string is New, which starts at character position number 27.

Page [151]

WordLength

Purpose: Return the length of a word in a string

Type: Rexx Function

Syntax: Answer = WORDLENGTH(string,n)

 where Answer is the length of the nth word in string.

Usage: This function returns the length (number of characters) of a word in a string.

Example:
 Answer = WordLength("Merry Christmas and Happy New Year",5)

 Say Answer

 Would display
 3

 The 5th word of the string is "New", whose length is 3.

Page [152]

WordPos

Purpose: Return the position of a word or phrase in a string

Type: Rexx Function

Syntax: Answer = WORDPOS(phrase,string)

 where Answer is the length of the nth word in string.

Usage: This function returns the word position of a phrase in a string.

Example:
 Answer = WordPos('and Happy',"Merry Christmas and

 Happy New Year")

 Say Answer

 Would display
 3

Page [153]

Words

Purpose: Returns a count of the words in a string

Type: Rexx Function

Syntax: Answer = WORDS(string)

Example:
 Answer = Words("Merry Christmas and Happy New Year")

 Say Answer

 Would display
 6

Page [154]

XRange

Purpose: Return a string of characters between two characters in the ASCII character set.

Type: Rexx Function

Syntax: Result = XRange(startchar,endchar)

 startchar-The first ASCII character that will be returned. The default is low-value

(X'00').

 endchar- The last ASCII character that will be returned. the default is high-value

(X'FF').

Usage: This function will return all of the characters in the ASCII Character set between

startchar and endchar, inclusive. If startchar is greater than endchar, then the

string that is returned will wrap around through the beginning.

Example 1 The following example will not return the letters in the alphabet as a string. This

is unfortunate, because the function would be a little more useful if it considered

only valid characters.
 Alphabet = XRange('A','Z')

 Say Alphabet

 The reason for this is that the leters of the alphabet do not appear continuously in

the ASCII character set. What would be returned would be the ASCII characters

represented by X'C1' through X'E9', inclusive:

 ABCDEFGHI.......JKLMNOPQR........STUVWXYZ

Example 2 The following example will return the alphabet.
 Alphabet = XRange('A','I')XRange('J','R')XRange('S','Z')

 Say Alphabet

Page [155]

X2C

Purpose: Converts a hexadecimal string to character

Type: Rexx Function

Syntax: CharString = X2C(hexstring)

Example:
 Answer = X2C('C4C1E5C560F1F6F1F6')

 Say Answer

 Would display
 Dave-1616

Page [156]

X2D

Purpose: Converts a hexadecimal string to decimal

Type: Rexx Function

Syntax: Number = X2D(hexstring)

Example:
 Answer = X2D('FF')

 Say Answer

 Would display
 255

 Answer = X2D('FFFF')

 Say Answer

 Would display
 65535

The maximum value that can be converted is X’3B9AC9FF’, which equals 999,999,999 in decimal.

Page [157]

Instructions Not Covered

Certain instructions, commands, and functions are seldom, if at all, used in applications.

These are used by system administrators and system programmers. These instructions,

commands, and functions are listed here. Why are they even mentioned, if we are not going to

document them?

They are listed, for the most part, to let you know (and to remind me) that they are indeed

available, in case we want to use them or learn more about them. Documentation of these

instructions, commands, and functions is beyond the scope of this manual. Check the appendix

for additional sources of documentation.

DropBuf Delete a data stack buffer

ExecUtil Control Rexx processing options for the current Rexx environment

MakeBuf Add a buffer to the data stack

Options This instruction is used for DBCS (Double-Byte Character Set) character and data

operations support.

Qbuf determine the number of data stack buffers that exist

Qelem Determine the number of data stack elements that exist

Storage Retrieve a number of bytes from a main storage address, or store a number of

bytes into a main storage address.

Page [158]

Section II -A Starter Rexx Tutorial

Page [159]

 Follow this tutorial by keying in the example Rexx execs and reading the

associated commentary. If your results are not identical to those of the tutorial, try to find out

exactly why. Each example builds on the previous ones, so it is important that you understand

each before you move on.

/* Rexx Exec Tutorial #1 */

Say "Hello World"

This is one of the shortest Rexx execs ever written. All it does is display the famous

programmer's primer message.

/* Rexx Exec Tutorial #2 */

Say "What is your name?"

Pull Answer

Say "So, your answer is " Answer". That is swell!"

This exec will ask you your name, and if you reply, it will echo it back, something like this:
So, your answer is JOHNNY. That is swell!

/* Rexx Exec Tutorial #3 */

Say "What is your name?"

Pull Answer

Say "So, "Answer", how old are you?"

Pull Age

AgeIndays = Age * 365

Say "If you didn't lie to me, you are about" AgeInDays "days old."

This exec will ask you your name, and then perform a calculation. Notice that I used an

apostrophe within a string that was enclosed in quotation marks. The exec's last display would

look like this:
If you didn't lie to me, you are about 8030 days old.

From here, the possibilities are endless. Rather than waste your (and my) time by making you go

through endless and pointless exercises, I will stop here, and let you get started with playing with

some ideas of your own. Just remember: have fun!

Page [160]

Section III - Rexx Examples

 I believe strongly in examples. No matter what someone is trying to say, it is clearer if it

can be illustrated with a good example. A person can then glean an interpretation from that

example.

The easiest way to write a Rexx exec is to take one that exists, and tailor it for your own

use. Remember that like with any programming language, if you copy someone's source code

verbatim, it's not ethically cool to put your name on it. If you use a major portion of source code

that is provided to you for free, it is only fair to at least give credit to the author somewhere in

your program. Please respect an author's inventiveness and hard work. Since Rexx execs are

distributed with the source, if you publish any new Rexx execs that you created using an existing

one as a basis, you are requested to at least credit the author. All of these examples were written

by David Grund, and are free to use.

 The examples provided here vary in purposes, but can be tailored to most specific needs

that you have. They don't necessarily demonstrate the best way to write a Rexx exec in all cases.

They do, however, demonstrate different techniques.

 In some cases, some of the execs depend on data from ISPF libraries. That data is not

included.

 Disclaimer: All examples are provided for the sake of example only. There is no

guarantee that these work as desired, or are entirely bug-free. You are free to, and encouraged to,

develop and improve any or all of these examples.

Page [161]

 The examples provided here are as follows:

ALLOCEIO Allocate O/P dataset; write Rexx array to it

CAPTSO Capture TSO command output

CHGBLKC Insert a COBOL change block

CHGDATA Modify a data file

CHGSTEP Change steps in JCL

COMMANDS List available commands

COMPCO Compare two files of order numbers

COMPDS Compare two sequential datasets

COMPPDS Compare two PDS's

DD Add a DD Statement

DELDUPS Delete duplicate records

DURATION Time an EXEC

FIXJCL Fix Job Control

FX File name cross-reference

HD Hex Dump

INIT Establish my TSO environment

INITSPF Establish my ISPF environment

JOBCARD Create a jobcard

LA List TSO allocations

LISTDSI List dataset information

LOTTERY Pick lottery numbers

LPDSIX List a PDS Index to a Sequential File

PROCSYMS Perform symbolic substitution

PTS PDS-to-Sequential; member name is prefix

PTS2 PDS-to-Sequential; member name is inserted

REXXMODL Rexx Exec Model

SCALE Display a Scale

SDN Sorted Directory w/Notes; directory annotator

SHOWDUPS Show duplicate records

STACK Start another ISPF session

TIMEFMTS Show all time formats

TIMETOGO Display time until an event

Page [162]

ALLOCEIO - Allocate O/P dataset; write array to it

 This is a code snippet that will allocate a TSO dataset, and then write a Rexx array to that

dataset. The TSO dataset is deleted first, in case it already exists.

 "Delete "MapDSN

 "Allocate DD(FiCvtDS) DA("MapDSN") new space(1 1) tracks",

 "LRECL(80) Block(6160) recfm(f b) RETPD(0)"

 "ExecIO" MapArray.0 "DiskW FiCvtDS (STEM MapArray. FINIS"

 "Free DDNAME(FiCvtDS) DA("MapDSN")"

Page [163]

CAPTSO - Capture TSO command output

 Using this exec, you can capture the output from just about any TSO command. The

purpose, of course, is to dump it into a dataset and edit it.

/* CapTSO - Capture TSO Output - Rexx Exec */

/* Written by David Grund */

Dummy = OutTrap("output_line.","*")

"LISTd 'GRUND.ASSEMBLY.DATA' m"

NumLines = OutPut_Line.0

Say NumLines "lines were created"

Dummy = OutTrap("OFF")

"Delete CAPTSO.List"

"Allocate DD(CapTSO) DA(CAPTSO.List) new space(15 15) tracks",

 "LRECL(80) Block(6160) recfm(f b) RETPD(0)"

"ExecIO" OutPut_line.0 "DiskW CapTSO (STEM OutPut_Line. FINIS"

"Free DDNAME(CapTSO) DA(CAPTSO.List)"

ADDRESS "ISPEXEC" "EDIT Dataset(CAPTSO.List) "

Page [164]

CHGBLKC - Insert a COBOL change block

 This Rexx exec is an ISPF edit macro, used to insert a program modification comment

block into a program. By using this exec, you can make the comment block will look the same

for every program, hence an increase in productivity. This technique, of course, can be used for

any language. I have created one for Easytrieve and another for Assembler.

/* ChgBlkC - Insert COBOL Change Block - ISPF Edit Macro (REXX EXEC) */

ADDRESS "ISREDIT" "MACRO PROCESS"

J11= "000001*---"

J12= "--------------------*"

J21= "000002* PROGRAM MODIFICATION LOG "

J22= " *"

J31= "000003* LOG # DATE WHO REASON "

J32= " *"

J41= "000004* 9 06/09/95 DAVID GRUND change descrip"

J42= "tion line 1 *"

J51= "000005* change descrip"

J52= "tion line 2 *"

address "ISREDIT" "LINE_AFTER 0 =" "'"J11""J12"'"

address "ISREDIT" "LINE_AFTER 1 =" "'"J21""J22"'"

address "ISREDIT" "LINE_AFTER 2 =" "'"J31""J32"'"

address "ISREDIT" "LINE_AFTER 3 =" "'"J41""J42"'"

address "ISREDIT" "LINE_AFTER 4 =" "'"J51""J52"'"

address "ISREDIT" "LINE_AFTER 5 =" "'"J11""J12"'"

ADDRESS "ISREDIT" "Cursor = 1 0"

address "ISREDIT" "LINE_AFTER 0 = MSGLine",

 "' "Please move these lines into the Remarks section."'"

Page [165]

CHGDATA - Modify a data file

 This exec is used to modify a data file. It reads a data file into core (an array), modifies it

(with hard-coded instructions), and then writes it back out. This is an exec that is tailored for use

each time it is used.

/* ChgData - Change a File - REXX Exec */

/* Written by David Grund */

/* This exec will read a data file, and modify it to contain */

/* conditions for testing: invalid data, etc */

/*------------- Main Body of Program ----------------------------*/

ARG IPDSN OPDSN

IPCtr = 0 /* Input record counter */

OPCtr = 0 /* Output record counter */

Call Pgm_Init

Do Forever

 Call ReadRec /* Read rec into stack; count */

 If IPEOF = "YES" then Leave

 Pull IPRec /* Get it from the stack */

 Call ProcessRecord /* Process it */

end

Call ProcEOJ /* EOJ Processing */

Exit

/*---*/

/*------------*/

/* Program Initialization */

/*------------*/

Pgm_Init:

"DelStack"

If IPDSN = "" then do

 Say "Command Type:

Syntax: ChgData IpDSN OpDSN"

 Exit

end

If OPDSN = "" then do

 OpDSN = IPDSN||.Modified

 Say "OPDSN not specified;" OPDSN "assumed."

end

"Alloc DDN(InFile) DSN("IPDSN") SHR"

If RC <> 0 then do

 Say "I could not allocate "IPDSN". Sorry."

 Exit

end

Dummy = ListDSI(IPDSN)

OPLRECL = SYSLRECL

OPBLKSize = SYSBlkSize

Page [166]

"Delete " OPDSN

"Free FI(OutFile)"

"Alloc DD(OutFile) DA("OPDSN") New space(15 15) tracks ",

 "Lrecl("OPLRECL") Block("OPBlkSize") Recfm(F B)"

If RC <> 0 then do

 Say "I could not allocate "OPDSN". Sorry."

 Exit

end

Return

/*------------*/

ReadRec:

/*------------*/

 "EXECIO 1 DiskR Infile" /* Add the I/P rec to the stack */

 If RC <> 0 then do

 IPEOF = "YES"

 "EXECIO 0 DiskR Infile (Finis" /* Close the input file */

 end

 Else IpCtr = IpCtr + 1 /* Count the records */

 Return ""

/*------------*/

/* Process the Record */

/*------------*/

ProcessRecord:

 OpRec = IpRec

 If IpCtr = 11 then /* Make the class invalid */

 OPRec = Substr(IPRec,1,9)||"0XRJC"||Substr(IpREc,15,307)

 If IpCtr = 16 then /* Make the class invalid */

 OPRec = Substr(IPRec,1,9)||"123456789"||Substr(IpREc,19,303)

 If IpCtr = 22 then /* Nom-transfer pack */

 OPRec = Substr(IPRec,1,24)||"XYZ"||Substr(IpREc,28,294)

 If IpCtr = 33 then /* Nom-minimum */

 OPRec = Substr(IPRec,1,27)||"ABC"||Substr(IpREc,31,291)

 If IpCtr = 44 then /* Store Number */

 OPRec = Substr(IPRec,1,33)||"DE"||Substr(IpREc,36,286)

 If IpCtr = 55 then /* Store quantity */

 OPRec = Substr(IPRec,1,36)||"GHIJ"||Substr(IpREc,41,281)

 If IpCtr = 57 then /* Warehouse Number */

 OPRec = Substr(IPRec,1,313)||"89"||Substr(IpREc,316,6)

 If IpCtr = 32 then /* Warehouse quantity */

 OPRec = Substr(IPRec,1,315)||"DAVEG "

 Push OpRec

 "EXECIO" 1 "DiskW OutFile"

 OpCtr = OpCtr + 1 /* Count the records */

Return

Page [167]

/*------------*/

/* End-of-job Processing */

/*------------*/

ProcEOJ:

 "DelStack"

 "EXECIO" 0 "DiskW OutFile (Finis" /* Close the file */

 "Free DDNAME(InFile OutFile)"

 Say "*** End of Job Totals ***"

 Say IpCtr "records read"

 Say OpCtr "records written"

Return

Page [168]

CHGSTEP - Change steps in JCL

 When you have religiously numbered the steps in a job stream, and find that you have to

insert a few, especially toward the beginning, your neatly-sequenced step names are

compromised.

 This Rexx exec will "quickly" renumber the steps so they are back in sequence and

incremented by 10.

 Here, you are creating the list of TSO commands that you will use to ultimately make the

changes. Creating a TSO command set is less stressful than making the changes one-by-one.

This way, you don't have to remember where you left off, and you can use ISPF's editor to mass-

produce the change statements.

/* CHGSTEP - RENUMBER STEPS IN A JOB - REXX EXEC */

ADDRESS "ISREDIT" "MACRO PROCESS"

ADDRESS "ISREDIT" "C STEP190 STEP330 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP185 STEP320 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP180 STEP310 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP170 STEP300 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP160 STEP290 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP150 STEP280 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP140 STEP270 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP130 STEP260 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP120 STEP250 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP110 STEP240 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP100 STEP230 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP096 STEP220 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP095 STEP210 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP090 STEP200 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP080 STEP190 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP070 STEP180 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP060 STEP170 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP050 STEP160 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP040 STEP150 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP038 STEP140 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP037 STEP130 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP036 STEP120 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP035 STEP110 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP034 STEP100 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP033 STEP090 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP032 STEP080 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP031 STEP070 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP025 STEP060 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP024 STEP050 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP023 STEP040 WORD ALL 10"

ADDRESS "ISREDIT" "C STEP022 STEP030 WORD ALL 10"

Page [169]

COFFEE – the Coffee Game
/* Coffee - Coffee Game REXX */

/* This is a Rexx learning exercise */

/* Two people take turns trying NOT to guess the number picked by the */

/* computer. The person who gets stuck with the number must buy. */

P1Name = "" /* Player 1 Name */

P2Name = "" /* Player 2 Name */

Turn = 1

Say "Welcome to the Coffee Game. I will pick a random number. Two "

Say "people will take turns trying NOT to guess it. Whomever does,"

Say "LOSES!"

Say " "

Say "Player 1, please tell me your name!"

Pull P1Name

Upper P1name

Say "Player 2, please tell me your name!"

Pull P2Name

Upper P2name

Redo:

Guesses = 0 /* Number of guesses */

CNo = Random(1,999) /* Computer number */

/* Say "The computer picked number " CNo */

InProgress = Y

P1Number = 0 /* Player 1 number */

P2Number = 0 /* Player 2 number */

Lower = 0

Upper = 1000

Do While InProgress = Y

 If Turn = 1 then do

 Turn = 2

 If (Upper - Lower) = 2 then do

 Say P1name "LOSES (by default). The number was " CNo

 Call Recap

 Leave

 End

 Say P1name", pick a number between " Lower " and " Upper "."

 Reask1 = N

 Pull P1Number

 If (P1Number <= Lower) | (P1Number >= Upper) then do

 Say "Dummy! I said between " Lower " and "Upper "! Try again!"

 ReAsk1 = Y

 End

 If ReAsk1 = Y then

 Turn = 1

 else do

 Guesses = Guesses + 1

 If CNo = P1Number then do

 InProgress = N

 Say P1Name "LOSES. The number was " P1Number

 Call Recap

 Leave

 End

 Else do

 If P1Number < CNo then Lower = P1Number

 If P1Number > CNo then Upper = P1Number

 End

Page [170]

 End

 End

 If Turn = 2 then do

 Turn = 1

 If (Upper - Lower) = 2 then do

 Say P2Name "LOSES (by default). The number was " CNo

 Call Recap

 Leave

 End

 Say P2Name", pick a number between " Lower " and " Upper "."

 Reask2 = N

 Pull P2Number

 If (P2Number <= Lower) | (P2Number >= Upper) then do

 Say "Dummy! I said between " Lower " and "Upper "! Try again!"

 ReAsk2 = Y

 End

 If ReAsk2 = Y then

 Turn = 2

 else do

 Guesses = Guesses + 1

 If CNo = P2Number then do

 InProgress = N

 Say P2Name "LOSES. The number was " P2Number

 Call Recap

 Leave

 End

 Else do

 If P2Number < CNo then Lower = P2Number

 If P2Number > CNo then Upper = P2Number

 End

 End

 End

End

Say "Again?"

Pull Ans

Upper Ans

If Ans = Y then signal ReDo

exit

Recap:

 Adjective = "only"

 If (Upper - Lower) > 25 then Adjective = "a Whopping"

 Say "The spread was " Adjective (Upper - Lower)

 Say "This game took " guesses "guesses."

Return

Page [171]

 COMPCO - Compare Two Files of Order Numbers

/* CompCO - Compare Two Files Of Order Numbers - Rexx */

/* Written by David Grund */

IPDSN1 = "'DGrund.STEP120.SYSUT2'"

IPDSN2 = "'DGrund.STEP140.SYSUT2'"

Call Proc01 /* Program Initialization */

Call Proc02 /* List First File to an Array */

Call Proc03 /* List Second File to an Array */

Call Proc04 /* Compare files now */

Call Proc99 /* Finalization */

Exit

/*--*/

/* Called Procedures */

/*--*/

/*------------*/

/* Program Initialization */

/*------------*/

Proc01:

 Say "CompCO - Compare Two Files of Order Numbers"

 Say "Proceeding..."

Return

/*------------*/

/* Read first file into core */

/*------------*/

Proc02:

 "Free fi(sysut1)"

 "Allocate Fi(SYSUT1) DA("IPDSN1") shr"

 "ExecIO * DiskR SYSUT1 (STEM File1Lines. FINIS"

 "Free FI(SYSUT1)"

 Say File1Lines.0 "records read from FILE2"

Return

/*------------*/

/* Read second file into core */

/*------------*/

Proc03:

 "Free fi(sysut2)"

 "Allocate Fi(SYSUT2) DA("IPDSN2") shr"

 "ExecIO * DiskR SYSUT2 (STEM File2Lines. FINIS"

 "Free FI(SYSUT2)"

 Say File2Lines.0 "records read from FILE1"

Return

/*------------*/

/* Compare the arrays now */

/*------------*/

Proc04:

 File1Rec = 1; File2Rec = 1;

 Call ReadFile1 /* Read first record from File 1 */

 Call ReadFile2 /* Read first record from File 2 */

Page [172]

 InFile1Only = 0; Infile2Only = 0; InBoth = 0;

 Do Forever

 /* Say "Comparing " File1Line "to" File2Line */

 If File1Line = File2Line then do

 If File1Line = "99999" then Leave

 /* Say File1Line" in both files" */

 InBoth = InBoth + 1

 Call ReadFile1 /* Read next record from File 1 */

 Call ReadFile2 /* Read next record from File 2 */

 End

 Else If File1Line < File2Line then do

 InFile1Only = InFile1Only + 1

 Say File1Line" in FILE2 but not in FILE1"

 Call ReadFile1 /* Read next record from File 1 */

 End

 Else do

 Infile2Only = Infile2Only + 1

 Say File2Line" in FILE1 but not in FILE2"

 Call ReadFile2 /* Read next record from File 2 */

 End

 End

Return

/*------------*/

/* Read a record from File 1 */

/*------------*/

ReadFile1:

 If File1Rec > File1Lines.0 then

 File1Line = "99999" /* "end of file" */

 Else DO

 File1Line = left(File1Lines.File1Rec,5)

 File1Rec = File1Rec + 1;

 End

Return

/*------------*/

/* Read a record from File 2 */

/*------------*/

ReadFile2:

 If File2Rec > File2Lines.0 then

 File2Line = "99999" /* "end of file" */

 Else Do

 File2Line = left(File2Lines.File2Rec,5)

 File2Rec = File2Rec + 1;

 End

Return

/*------------*/

/* Finalization */

/*------------*/

Proc99:

 Say "In FILE2, not in FILE1:" ForMat(InFile1Only,5)

 Say "In FILE1, not in FILE2:" Format(InFile2Only,5)

 Say "In Both :" ForMat(InBoth,5)

Return

Page [173]

Page [174]

COMPARE - Compare two sequential datasets

 This exec will call IEBCOMPR to compare two datasets. You don't get a comprehensive

and detailed listing of differences. Instead, you get notification as to whether the two datasets

contain exactly the same data- a check that is required in a parallel test.

Arg IPDSN1 IPDSN2

If Arg() == 0 then do

 Say "Compare - Compare two TSO datasets"

 Say " Type:

Syntax: Compare IPDSN1 IPDSN2"

 Say " Please reenter this command"

 Exit

End

If SYSDSN(IPDSN1) = "OK" then nop

Else do

 Say "I cannot find "IPDSN1

 Exit

End

If Arg(2) == '' then nop

Else do

 Say "Please enter the name of the second dataset"

 Pull IPDSN2

End

If SYSDSN(IPDSN2) = "OK" then nop

Else do

 Say "I cannot find "IPDSN2

 Exit

End

"Free fi(sysut1,sysut2,sysin,sysprint)"

"Allocate Fi(SYSUT1) DA("IPDSN1") shr"

"Allocate Fi(SYSUT2) DA("IPDSN2") shr"

"Allocate Fi(SYSIN) DUMMY"

"Allocate Fi(SYSPRINT) DA(*)"

"Call 'SYS1.Linklib(IEBCOMPR)'"

Page [175]

COMPDSE – Compare Two Sequential Datasets - Enhanced

 This exec will compare two sequential datasets, line-for-line, and report differences.

Neither file is assumed to be in any kind of sequence. This differs from COMPDS in that it does

not call IEBCOMPR; it does the compares internally.

 The best thing about this tool is that it can be copied and modified for specialized file

compare needs.

/* COMPDSE - Compare Two Datasets - Enhanced REXX */

/* Written by David Grund */

/* This exec will compare two sequential datasets, line-for-line.

 We do not regard the input file's sequence. */

 ARG IPDS1 IPDS2

Call Proc01 /* Program Initialization */

Call Proc02 /* Copy both datasets to an array */

Call Proc04 /* Compare files now */

Call Proc99 /* Finalization */

Exit

/*---*/

/* Called Procedures */

/*---*/

/*------------*/

/* Program Initialization */

/*------------*/

Proc01:

 Say; Say; Say

 Say "CompDSE - Compare Two Datasets - Enhanced"

 If IPDS1 = "" ³ IPDS2 = "" then do

 Say "Command Syntax: CompDSE IPDS1 IPDS2"

 Exit

 End

 Say "Comparing "IPDS1 "to" IPDS2

 Say "Proceeding..."

Return

/*------------*/

/* Copy both datasets to arrays */

/*------------*/

Proc02:

 X = OutTrap("ON"); "Free Fi(IpFile) DA("IPDS1")"; X=OutTrap("OFF")

 "Alloc FI(IPFile) DA("IPDS1") SHR"

 If RC > 0 then exit

 "ExecIO * DiskR IPFile (Stem DS1Lines. Finis "

 "Free FI(IPFile)"

 X = OutTrap("ON"); "Free Fi(IpFile)"; X=OutTrap("OFF")

 Say DS1Lines.0 "lines were found in" IPDS1

 X = OutTrap("ON"); "Free Fi(IpFile) DA("IPDS2")"; X=OutTrap("OFF")

 "Alloc FI(IPFile) DA("IPDS2") SHR"

 If RC > 0 then exit

Page [176]

 "ExecIO * DiskR IPFile (Stem DS2Lines. Finis "

 "Free FI(IPFile)"

 X = OutTrap("ON"); "Free Fi(IpFile)"; X=OutTrap("OFF")

 Say DS2Lines.0 "lines were found in" IPDS2

Return

/*------------*/

/* Compare the files now */

/*------------*/

Proc04:

 CtrEquals = 0; CtrNEquals = 0;

 Do I = 1 to DS1Lines.0

 If DS1Lines.I = DS2Lines.I then

 CtrEquals = CtrEquals + 1

 Else do

 CtrNEquals = CtrNEquals + 1

 Say "Records #"I" differ:"

 Say "IPDS1: "DS1Lines.I

 Say "IPDS2: "DS2Lines.I

 Say

 End

 End

Return

/*------------*/

/* Finalization */

/*------------*/

Proc99:

 Say CtrEquals "records were identical"

 Say CtrNEquals "records were different"

Return

Page [177]

COMPPDS - Compare two PDS's

 This command will compare two partitioned datasets. One is considered a "test" PDS; the

other is considered a "production" PDS.

/* COMPPDS - Compare PDS's - REXX Exec */

 ARG TestPDS ProdPDS

/* This command will compare a "Test" PDS against a "Production" PDS.*/

Call Proc01 /* Program Initialization */

Call Proc02 /* List First PDS Members to an Array */

Call Proc03 /* List Second PDS Members to an Array */

Call Proc04 /* Compare files now */

Call Proc99 /* Finalization */

Exit

/*---*/

/* Called Procedures */

/*---*/

/*------------*/

/* Program Initialization */

/*------------*/

Proc01:

 Say "CompPDS - Compare PDS's"

 If TestPDS = "" | PRODPDS = "" then do

 Say "Command Type:

Syntax: CompPDS TestPDS ProdPDS"

 Exit

 End

 Say "Comparing "TestPDS "to" ProdPDS

 Say "Proceeding..."

Return

/*------------*/

/* List Members of TestPDS */

/*------------*/

Proc02:

 /* Say "Reading "TESTPDS"..." */

 Dummy = OutTrap("TestMems.","*")

 "LISTD " TestPDS "M"

 NumLines = TestMems.0 - 6

 Say NumLines "Member names were found in" TestPDS

 Dummy = OutTrap("OFF")

 NumTestRecs = TestMems.0 + 1

 /* Clean up the array */

 Do I = 1 to 6 ; TestMems.I = "" ; End

 Do I = 7 to TestMems.0

 TestMems.I = strip(TestMems.I)

 End

Return

/*------------*/

/* List Members of ProdPDS */

Page [178]

/*------------*/

Proc03:

 /* Say "Reading "ProdPDS"..." */

 Dummy = OutTrap("ProdMems.","*")

 "LISTD " ProdPDS "M"

 NumLines = ProdMems.0 - 6

 Say NumLines "Member names were found in" ProdPDS

 Dummy = OutTrap("OFF")

 NumProdRecs = ProdMems.0 + 1

 /* Clean up the array */

 Do I = 1 to 6 ; ProdMems.I = "" ; End

 Do I = 7 to ProdMems.0

 ProdMems.I = strip(ProdMems.I)

 End

Return

/*------------*/

/* Compare the member names now */

/*------------*/

Proc04:

 TestCurrRec = 6; ProdCurrRec = 6;

 Call ReadTest /* Read first record from TestPDS */

 Call ReadProd /* Read first record from ProdPDS */

 InTestOnly = 0; InProdOnly = 0; InBoth = 0;

 Do Forever

 /* Say "Comparing " TestMem "to" ProdMem */

 If TestMem = ProdMem then do

 If TestMem = "99999999" then Leave

 If TestMem = " " then nop

 Else do

 InBoth = InBoth + 1

 Call CompMembers /* Compare the members */

 End

 Call ReadTest /* Read next record from TestPDS */

 Call ReadProd /* Read next record from ProdPDS */

 End

 Else If Testmem < ProdMem then do

 InTestOnly = InTestOnly + 1

 Say TestMem" in " TestPDS "but not in "ProdPds

 Call ReadTest /* Read next record from TestPDS */

 End

 Else do

 InProdOnly = InProdOnly + 1

 Call ReadProd /* Read next record from ProdPDS */

 End

 End

Return

/*------------*/

/* Compare the members, line for line */

/*------------*/

CompMembers:

 /* First, normalize the datasetnames */

 If Left(TestPDS,1) = "'" then do

 TestIPDSN = strip(TestPDS)

Page [179]

 TestIPDSN = DelStr(TestIPDSN,1,1)

 IDLen = length(TestIPDSN)

 TestIPDSN = DelStr(TestIPDSN,IDLen,1)

 end

 else

 TestIPDSN = TestDSN

 TestIPDSN = "'"||TestIPDSN||"("||TestMem||")'"

 If Left(ProdPDS,1) = "'" then do

 ProdIPDSN = strip(ProdPDS)

 ProdIPDSN = DelStr(ProdIPDSN,1,1)

 IDLen = length(ProdIPDSN)

 ProdIPDSN = DelStr(ProdIPDSN,IDLen,1)

 end

 else

 ProdIPDSN = ProdDSN

 ProdIPDSN = "'"||ProdIPDSN||"("||ProdMem||")'"

 Address TSO

 "Free fi(SYSUT1 SYSUT2 SYSPrint SYSIN)"

 "Alloc Fi(SYSUT1) Da("||TestIPDSN") SHR"

 "Alloc Fi(SYSUT2) Da("||ProdIPDSN") SHR"

 "Alloc FI(SYSPrint) DUMMY"

 "Alloc FI(SYSIN) DUMMY"

 "Call 'SYS1.LinkLib(IEBCOMPR)'"

 RtrnCD = RC

 If RtrnCD = 0 then

 Say TestMem ||": The modules are identical"

 Else

 Say TestMem ||": The modules differ!"

Return

/*------------*/

/* Read a record from TestPDS */

/*------------*/

ReadTest:

 TestCurrRec = TestCurrRec + 1;

 If TestCurrRec > NumTestRecs then

 TestMem = "99999999" /* "end of file" */

 Else DO

 TestMem = TestMems.TestCurrRec

 /* Say "I just read from TEST: " TestMem */

 End

Return

/*------------*/

/* Read a record from ProdPDS */

/*------------*/

ReadProd:

 ProdCurrRec = ProdCurrRec + 1;

 If ProdCurrRec > NumProdRecs then

 ProdMem = "99999999" /* "end of file" */

 Else Do

 ProdMem = ProdMems.ProdCurrRec

 /* Say "I just read from PROD: " ProdMem */

 End

Return

/*------------*/

Page [180]

/* Finalization */

/*------------*/

Proc99:

 Say "In Test, not in prod:" InTestOnly

 Say "In Prod, not in test:" InProdOnly

 Say "In Both :" InBoth

Return

Page [181]

 ConcatL - Concatenate Libraries

 This command will concatenate a library to a current DDName's allocation.

If you wanted to add your Rexx Exec library to an existing SYSEXEC allocation, you

could do it two ways:

1) You could free SYSEXEC, and then reallocate all necessary libraries, including your

own. But that would make you dependent upon someone in Systems to tell you when

the normal allocation (all necessary libraries) changes.

2) You could simply add your library to the current concatenation, using this example.

This way, if the "necessary library" sequence changes, you will not be affected. Your

library will always be concatenated to that set.

To execute this example:
 Exec ‘userid.REXX.EXEC(ConCatL)’ ‘SYSEXEC userid.REXX.EXEC’

/* ConCatL - Allocate a library to an exiting concatenation REXX */

Arg SearchDD LibToAdd

LibToAdd = "'"LibToAdd"'" /* Add some quotes */

Found = "NO"

Concat = "" /* Set to null in case DDName not allocated */

Dummy = OutTrap("Sysoutline.","*") /* Start capture */

"ListALC Status"

Dummy = OutTrap("OFF") /* Stop Capture */

Do I = 1 to Sysoutline.0

 /* Say "looking at " Sysoutline.I */

 If SubStr(Sysoutline.I,3,8) = SearchDD then do

 Found = "YES"

 I2 = I - 1

 DSN = SubStr(SysoutLine.I2,1,44)

 DSN = strip(DSN)

 Concat = "'" || DSN || "'" /* add apostrophe */

 Leave I

 End

End I

If Found = "YES" then do

 Do I3 = I + 1 to SysoutLine.0 - 1 by 2

 I4 = I3 + 1

 If SubStr(Sysoutline.I4,3,8) <> " ",

 then Leave

 If SubStr(SysoutLine.I3,1,2) <> " " then do

 DSN = Substr(Sysoutline.I3,1,45)

 DSN = strip(DSN)

 Concat = Concat || " '" || DSN || "'"

 End

 End

End

"Allocate DDName("SearchDD") SHR Reuse ",

 "DSName("Concat LibToAdd")"

Page [182]

Say "ConCatL added " LibToAdd "to" SearchDD"."

Page [183]

CPDSIX – Compare Two PDS Indexes

 This exec will simply compare the directories (or indexes) of two PDS’s, and report the

differences. This tool can be a very helpful quality control tool.

/* CPDSIX - Compare PDS Indexes - REXX Exec */

ARG IPPDS1 IPPDS2

Call Proc01 /* Program Initialization */

Call Proc02 /* List First PDS Members to an Array */

Call Proc03 /* List Second PDS Members to an Array */

Call Proc04 /* Compare files now */

Call Proc99 /* Finalization */

Exit

/*--*/

/* Called Procedures */

/*--*/

/*------------*/

/* Program Initialization */

/*------------*/

Proc01:

 Say; Say; Say;

 Say "CPDSIX, Comparing..."

 Say "PDS1: "IPPDS1

 Say "PDS2: "IPPDS2

Return

/*------------*/

/* List Members of IPPDS1 */

/*------------*/

Proc02:

 /* Say "Reading "IPPDS1"..." */

 Dummy = OutTrap("PDS1Mems.","*")

 "LISTD " IPPDS1 "M"

 NumLines = PDS1Mems.0 - 6

 Say NumLines "Member names were found in" IPPDS1

 Dummy = OutTrap("OFF")

 NumPDS1Recs = PDS1Mems.0 + 1

 /* Clean up the array */

 Do I = 1 to 6 ; PDS1Mems.I = "" ; End

 Do I = 7 to PDS1Mems.0

 PDS1Mems.I = strip(PDS1Mems.I)

 End

Return

/*------------*/

/* List Members of IPPDS2 */

/*------------*/

Proc03:

 /* Say "Reading "IPPDS2"..." */

 Dummy = OutTrap("PDS2Mems.","*")

 "LISTD " IPPDS2 "M"

 NumLines = PDS2Mems.0 - 6

Page [184]

 Say NumLines "Member names were found in" IPPDS2

 Dummy = OutTrap("OFF")

 NumPDS2Recs = PDS2Mems.0 + 1

 /* Clean up the array */

 Do I = 1 to 6 ; PDS2Mems.I = "" ; End

 Do I = 7 to PDS2Mems.0

 PDS2Mems.I = strip(PDS2Mems.I)

 End

Return

/*------------*/

/* Compare the member names now */

/*------------*/

Proc04:

 PDS1CurrRec = 6; PDS2CurrRec = 6;

 Call ReadPDS1 /* Read first record from IPPDS1 */

 Call ReadPDS2 /* Read first record from IPPDS2 */

 InPDS1Only = 0; InPDS2Only = 0; InBoth = 0;

 Do Forever

 /* Say "Comparing " PDS1Mem "to" PDS2Mem */

 If PDS1Mem = PDS2Mem then do

 If PDS1Mem = "99999999" then Leave

 If PDS1Mem = " " then nop

 Else do

 InBoth = InBoth + 1

 End

 Call ReadPDS1 /* Read next record from IPPDS1 */

 Call ReadPDS2 /* Read next record from IPPDS2 */

 End

 Else If PDS1mem < PDS2Mem then do

 InPDS1Only = InPDS1Only + 1

 Say PDS1Mem" in PDS1 but not in PDS2"

 Call ReadPDS1 /* Read next record from IPPDS1 */

 End

 Else do

 InPDS2Only = InPDS2Only + 1

 Say PDS2Mem" in PDS2 but not in PDS1"

 Call ReadPDS2 /* Read next record from IPPDS2 */

 End

 End

Return

/*------------*/

/* Read a record from IPPDS1 */

/*------------*/

ReadPDS1:

 PDS1CurrRec = PDS1CurrRec + 1;

 If PDS1CurrRec = NumPDS1Recs then

 PDS1Mem = "99999999" /* "end of file" */

 Else DO

 PDS1Mem = PDS1Mems.PDS1CurrRec

 /* Say "I just read from PDS1: " PDS1Mem */

 End

Return

Page [185]

/*------------*/

/* Read a record from IPPDS2 */

/*------------*/

ReadPDS2:

 PDS2CurrRec = PDS2CurrRec + 1;

 If PDS2CurrRec = NumPDS2Recs then

 PDS2Mem = "99999999" /* "end of file" */

 Else Do

 PDS2Mem = PDS2Mems.PDS2CurrRec

 /* Say "I just read from PDS2: " PDS2Mem */

 End

Return

/*------------*/

/* Finalization */

/*------------*/

Proc99:

 Say "In PDS1, not in PDS2:" InPDS1Only

 Say "In PDS2, not in PDS1:" InPDS2Only

 Say "In Both :" InBoth

Return

Page [186]

 DD - Add a DD Statement

 This command will add the JCL for an output disk DD statement. It is designed for JES2,

and will also generate a delete step.

/* DD - ISPF Edit Macro (REXX EXEC) */

ADDRESS "ISREDIT" "MACRO PROCESS"

address "ISREDIT" "(XDSN)=DATASET"

address "ISREDIT" "(XMEM)=MEMBER"

/* First get the user ID from a list */

UserID = sysvar(SYSUID)

UserName = "an unknown TSO user"

If UserID = "GRUND" then UserName = "David Grund"

 Say "UserID =" UserID "; Name =" UserName

OurDSN = UserID||".whatever"

/* Now create the JCL statements */

J01 = "//*"

J021 = "//*-----------------------------------"

J022 = "--------------------------------*"

J03 = "//* STEPNN1 - IEFBR14 - DELETE OUTPUT DATASETS"

J04 = "//STEPNN1 EXEC PGM=IEFBR14"

J05 = "//DELDS DD DSN="||OurDSN||","

J06 = "// DISP=(MOD,DELETE),UNIT=SYSDA,SPACE=(TRK,(0))"

J07 = "//*"

J08 = "//* Output file description"

J09 = "//filenam DD DSN="||OurDSN||","

J10 = "// DISP=(NEW,CATLG,DELETE),"

J11 = "// UNIT=SYSDA,SPACE=(080,(123,123),RLSE),AVGREC=U,"

J13 = "// DCB=(DSORG=PS,RECFM=FB,LRECL=080,BLKSIZE=0)"

/* Now insert them into the currently-edited member */

address "ISREDIT" "LINE_AFTER 0 =" "'"J01"'"

address "ISREDIT" "LINE_AFTER 1 =" "'"J021""J022"'"

address "ISREDIT" "LINE_AFTER 2 =" "'"J03"'"

address "ISREDIT" "LINE_AFTER 3 =" "'"J021""J022"'"

address "ISREDIT" "LINE_AFTER 4 =" "'"J04"'"

address "ISREDIT" "LINE_AFTER 5 =" "'"J05"'"

address "ISREDIT" "LINE_AFTER 6 =" "'"J06"'"

address "ISREDIT" "LINE_AFTER 7 =" "'"J07"'"

address "ISREDIT" "LINE_AFTER 8 =" "'"J08"'"

address "ISREDIT" "LINE_AFTER 9 =" "'"J09"'"

address "ISREDIT" "LINE_AFTER 10 =" "'"J10"'"

address "ISREDIT" "LINE_AFTER 11 =" "'"J11"'"

address "ISREDIT" "LINE_AFTER 12 =" "'"J13"'"

/* NOW PUT ASTERISKS IN COL 71 IN LINES 4 THRU 8 */

ADDRESS "ISREDIT" "LABEL 2 = .LSTART "

ADDRESS "ISREDIT" "LABEL 3 = .LEND "

ADDRESS "ISREDIT" "CHANGE ' ' '*' 71 .LSTART .LEND ALL"

ADDRESS "ISREDIT" "RESET"

ADDRESS "ISREDIT" "Cursor = 1 0"

Page [187]

address "ISREDIT" "LINE_AFTER 0 = NoteLine",

 "'--- This is the delete step ---------------------------'"

address "ISREDIT" "LINE_AFTER 7 = NoteLine",

 "'--- The output DD specification follows ---------------'"

address "ISREDIT" "LINE_AFTER 13 = NoteLine",

 "'---'"

address "ISREDIT" "LINE_AFTER 13 = NoteLine",

 "'--- Constructed especially for " || UserName "'"

Page [188]

DELDUPS - Delete Duplicate Records

/* DelDups - Delete Duplicate Lines REXX Exec */

ADDRESS ISREDIT

'MACRO (begcol endcol)'

If Begcol = '?' then do

 zedsmsg = 'DelDups begcol,endcol'

 zedlmsg = 'Command syntax: DelDup beginning col, ending col'

 signal quitme

end

numcheck = DATATYPE(begcol,N) /* Determine if any parms have */

If NumCheck /= 1 then BegCol = 1 /* been passed. */

numcheck = DATATYPE(endcol,N)

If NumCheck /= 1 then 'ISREDIT (endcol) = LRECL'

'ISREDIT (currline) = LINENUM .ZFIRST' /* save starting record # */

'ISREDIT (lastline) = LINENUM .ZLAST' /* save ending record # */

'ISREDIT (cl,cc) = CURSOR' /* save cursor position */

DupCnt = 0

Do currline = 1 to lastline - 1

 If CurrLine > (LastLine - 1) then leave

 'ISREDIT (line1) = LINE' currline

 line1 = substr(line1,begcol,(endcol - begcol) + 1)

 nextline = currline + 1

 'ISREDIT (line2) = LINE' nextline /* get next record */

 line2 = substr(line2,begcol,(endcol - begcol) + 1)

 If line1 == line2 then do

 DupCnt = DupCnt + 1

 "ISREDIT LABEL " currline " = .A"

 "ISREDIT LABEL " nextline " = .B"

 "ISREDIT Delete " nextline

 currline = currline - 1 ; lastline = lastline - 1

 end

end

zedsmsg = DupCnt 'DUPS Deleted'

zedlmsg = DupCnt 'duplicate lines were deleted'

Quitme:

ADDRESS ISPEXEC

'SETMSG MSG(ISRZ000)'

EXIT 0

Page [189]

DURATION - Time an EXEC

 This Rexx exec can be modified to time the processing of a command. It's a good idea to

do this is some of the longer-running execs, or to brag about how fast your exec can accomplish

something!

/* Duration - Rexx EXEC */

/* This command will test the code to perform a calculation

 of command duration */

STime = Time(E) /* Start time */

Say "I am waiting for you to hit enter!"

Pull Answer

ETime = Time(E) /* End Time */

Duration = ETime - STime

Say "This command took" Duration "seconds!"

Page [190]

FindMem - Find a Member in a Concatenation

 This Rexx exec will search a concatenated set of libraries for a specific member name.

This is useful for when you want to know exactly which library an ISPF panel or a Rexx Exec is

being executed from.

 This command can also be executed in batch to look for copybooks or load modules in a

concatenation.
/* FindMem - Find a Member in a Concatenation REXX */

ARG OurDD OurMem

Call Proc01 /* Initialization */

Call Proc02 /* ListA to an array */

Call Proc03 /* Adjust the array */

Call Proc04 /* Remove 'KEEP' lines */

/* Call Proc05 */ /* Write the array to a dataset and view it */

Call Proc06 /* Isolate the DD */

Call Proc10 /* Now search each PDS */

Exit

/*-----------*/

/* Proc01 - Initialization */

/*-----------*/

Proc01:

 If OurDD = "" | OurMem = "" then do

 Say "Command syntax: FindMem DDName MemName"

 Exit(16)

 End

Return

/*-----------*/

/* Proc02 - ListA to an array */

/*-----------*/

Proc02:

 Dummy = OutTrap("output_line.","*")

 "LISTA SY ST"

 NumLines = OutPut_Line.0

 /* Say NumLines "lines were created" */

 Dummy = OutTrap("OFF")

Return

/*-----------*/

/* Proc03 - Adjust the array */

/*-----------*/

Proc03:

 /* Move the line with the DDNAME above the first datasetname

 that it is concatenated to. It is currently below. */

 Do I = 1 to NumLines

 Col1_2 = SubStr(OutPut_Line.I,1,2)

 Col3 = SubStr(OutPut_Line.I,3,1)

 Col12_15 = SubStr(OutPut_Line.I,12,4)

 If Col1_2 = ' ' & ,

 Col3 /= ' ' & ,

 Col12_15 = 'KEEP' then do

 J = I - 1

 SaveLine = OutPut_Line.I

 Output_Line.I = OutPut_Line.J

Page [191]

 Output_Line.J = SaveLine

 end

 end

Return

/*-----------*/

/* Proc04 - Remove all lines that say only "KEEP" */

/*-----------*/

Proc04:

 J = 0 /* Output array counter */

 Do I = 1 to NumLines

 ThisLine = strip(Output_Line.I)

 If (left(ThisLine,4) = 'KEEP') | ,

 (left(ThisLine,8) = 'TERMFILE') then nop=nop

 Else do

 J = J + 1; NewArray.J = OutPut_Line.I

 End

 End

 NewArray.0 = J

Return

/*-----------*/

/* Proc05 - Write the Array to a dataset and view it */

/*-----------*/

Proc05:

 "Delete FindMem.list"

 "Allocate DD(FMList) DA(FindMem.List) new space(1 1) tracks",

 "LRECL(80) Block(5600) recfm(f b) RETPD(0)"

 "ExecIO" NewArray.0 "DiskW FMList (STEM NewArray. FINIS"

 "Free DDNAME(FMList) DA(FindMem.List)"

 ADDRESS "ISPEXEC" "View Dataset(FindMem.List)"

Return

/*-----------*/

/* Proc06 - Isolate the DD */

/*-----------*/

Proc06:

 J = 0 /* DSNArray counter */

 DDName = ''

 Do I = 1 to NewArray.0

 If left(NewArray.I,2) = ' ' then

 DDName = left(strip(NewArray.I),8)

 else do

 ThisRec = DDName||strip(NewArray.I)

 J = J + 1; DSNArray.J = ThisRec

 end

 End

 DSNArray.0 = J

 /* Do I = 1 to DSNArray.0

 Say DSNArray.I

 End */

Return

/*-----------*/

Page [192]

/* Proc10 - Search each DSN for our member name */

/*-----------*/

Proc10:

 DDFound = 0 ; MemFnd = 0

 Do I = 1 to DSNArray.0

 If left(DSNArray.I,8) = OurDD then do

 DDFound = DDFound + 1

 DSN = strip(substr(DSNArray.i,9,63))

 /* Say "Looking through DSN" DSN */

 Call Proc101 /* Check this DSN */

 End

 End

 Say "All together, I found "DDFound" DSN's allocated to DDName "OurDD

 TWord = 'times'; If MemFnd = 1 then TWord = 'time'

 Say "I found member "OurMem MemFnd TWord"."

Return

/*-----------*/

/* Proc101 - Search this DSN for our member name */

/*-----------*/

Proc101:

 /* First make sure this dataset is a PDS */

 RC = ListDSI("'"DSN"'" Directory)

 If RC > 0 then do

 Say 'Error processing 'DSN

 Say SYSMSGLVL1; Say SYSMSGLVL2 ; Say

 Return

 End

 If SYSDSORG = "PO" then do

 Dummy = OutTrap("PDSLines.","*")

 "LISTD '"DSN"' M"

 NumLines = PDSLines.0

 Dummy = OutTrap("OFF")

 Do K = 6 to PDSLines.0

 /* Say "The line is: "PDSLines.K */

 If Pos(OurMem,PDSLines.K) > 0 then do

 Say "I found member "OurMem" in "DSN

 MemFnd = MemFnd + 1

 End

 End

 End

 Else

 Say "Dataset "DSN" is not a PDS."

Return

Page [193]

FixJCL - Fix Job Control

FixJCL is a Rexx exec that will read a set of Mainframe JCL, and make certain format

changes.

Granted that these format changes are to personal style and specifications: it puts the

datasetname on the first line, the disposition parameters on the second line (unless they are

short), the space parameters together on the next line, the DCB parameters on the next, and

anything else on the last.

The beauty of this exec is that it parses the JCL, and isolates just about every "common"

JCL field, so if you didn't want to create finished, or "fixed" JCL, you could do whatever

processing you wanted. Additionally, the code is all there, so you could make any desired

enhancements.

The exec first reads the JCL into an array, parses and identifies it, and then creates a file

of fields. The code to catalogue this particular file has been commented out, but for testing or

development, you would want to open this code back up.

That array is then read, and the final JCL file is created.

Please note that the objective of this exec is twofold: to present a usable tool, and to

provide the code to enhance the tool. There is a lot of room for improvement in this particular

tool. It isn't meant to be a finished and shiny product. It is meant to accomplish something very

useful, and allow the user to make any desired improvements or enhancements to something that

has a good, solid base.

The code, in its entirety, follows:
/* FixJCL - Create a Fixed File of JCL - REXX Exec */

ARG IPDSN

Call Proc01 /* Program initialization */

Call Proc10 /* Parse the JCL */

Call Proc30 /* Write the control card array */

Call Proc40 /* Write the fixed JCL */

Call ProcEOJ /* EOJ Processing */

Exit

/*------------

Output record layout: */

Cols 1-3: Record Type

Cols 4-72: text

1-- JOBCARD

101 Jobname

102 Accounting Info

103 Routing Info

104 MSGLEVEL

105 MSGCLASS

106 CLASS

Page [194]

107 NOTIFY

199 Other info

4-- STEP/EXEC

401 Stepname

402 PGM= or procname

403 PARM

404 COND

405 REGION

5-- DD Statement

501 DDName

502 SYSOUT

503 'DUMMY'

504 DSN

505 DISP

506 UNIT

507 SPACE

508 AVGREC

509 DCB first positional

510 DCB DSORG

511 DCB RECFM

512 DCB LRECL

513 DCB BLKSIZE

514 LABEL

515 COPIES

516 DEST

517 HOLD

518 TRTCH

519 OUTPUT

520 VOL=SER

521 FREE

601 Data

701 COMMENT

801 OUTPUT

901 Unknown

--------------*/

/*------------*/

/* Program Initialization */

/*------------*/

Proc01:

 "DelStack"

 If IPDSN = "" then do

 Say "Command syntax: FixJCL DSN"

 Exit

 end

 Say "FixJCL Working on " IPDSN ": ",

 sysvar(SYSUID) Date(U) Time() "..."

 Call Proc011 /* Read the JCL into an array */

 ExpectingContinuation = "N"

 OpCtr = 0

 OData.0 = OpCtr /* Create the output array */

 Spaces = " "

Return

Page [195]

/*------------*/

/* Read the JCL into an array */

/*------------*/

Proc011:

 "Alloc DDN(InFile) DSN("IPDSN") SHR"

 If RC <> 0 then do

 Say "I could not allocate "IPDSN". Sorry."

 Exit

 end

 "ExecIO * DiskR InFile (Stem JCL. Finis"

 "Free FI(InFile)"

 Say "I read "JCL.0" lines of JCL into the array."

Return

/*------------*/

/* Parse the JCL */

/*------------*/

/* This routine will parse the JCL, and create an array of

 control cards representing the JCL values */

Proc10:

 Do I = 1 to JCL.0

 Record = strip(left(JCL.I,72)) /* Look at only cols 1-72 */

 Call Proc20 /* Parse/identify the stmt */

 If RecID = "J" then Call Proc230 /* Job card */

 If RecID = "E" then Call Proc240 /* Exec card */

 If RecID = "D" then Call Proc250 /* DD card */

 If RecID = "A" then Call Proc260 /* data card */

 If RecID = "C" then Call Proc270 /* Comment card */

 If RecID = "O" then Call Proc280 /* Output Card */

 If RecID = "U" then Call Proc290 /* Unknown card */

 End

Return

/*------------*/

/* Parse and identify the JCL Statement */

/*------------*/

Proc20:

 Parse Var Record Piece1 Piece2 Piece3

 If ExpectingContinuation = "Y" then Return

 RecID = "U" /* Unknown */

 If left(Record,1) /= "/" then RecID = "A" /* Data */

 If left(Record,3) = "//*" then RecID = "C" /* Comment */

 Else

 If left(Record,2) = "//" then do

 If strip(Piece2) = "JOB" then RecID = "J" /* Job card */

 If strip(Piece2) = "EXEC" then RecID = "E" /* Execute card */

 If strip(Piece2) = "DD" then RecID = "D" /* DD card */

 If strip(Piece2) = "OUTPUT" then RecID = "O" /* Output card */

 End

 /* Say "The following record:"

 Say Record

 Say "has been identified as "RecID */

Return

/*------------*/

/* Process Job Card */

/*------------*/

Page [196]

Proc230:

 /* If this is the first card of a set, then the variable

 ExpectingContinuation will be "N". For all other cards, it

 will be 'Y'. */

 If ExpectingContinuation = "N" then JobCard = Record

 Else Jobcard = Jobcard||Piece2

 If right(Record,1) = ',' then ExpectingContinuation = "Y"

 Else do /* We have read the final job card */

 ExpectingContinuation = "N"

 Call Proc2301 /* Parse the job statement */

 Call Proc2302 /* Write them to the array */

 End

Return

/*------------*/

/* Parse the Job Statement */

/*------------*/

Proc2301:

 Parse Var Jobcard Piece1 Piece2 Piece3

 V101 = DelStr(Piece1,1,2) /* Job name */

 Parse var Piece3 V102 "," Piece3 /* Job accounting info */

 If left(Piece3,1) = "'" then Piece3 = DelStr(Piece3,1,1)

 Parse var Piece3 V103 "'" Piece3 /* Routing info */

 V104 = " " ; V105 = "" ; V106 = ""; V107 = "" ; V199 = ""

 Parse var Piece3 PJ1 "," PJ2 "," PJ3 "," PJ4 "," ,

 PJ5 "," PJ6 "," PJ7 "," PJ8

 Do J = 1 to 8

 ThisArg = Value(PJ||J)

 If left(ThisArg,9) = "MSGLEVEL=" then do

 V104 = right(ThisArg,1)

 ThisPos = Index(Piece3,ThisArg) /* Del */

 Piece3 = DelStr(Piece3,ThisPos,length(ThisArg)+1)

 End

 If left(ThisArg,9) = "MSGCLASS=" then do

 V105 = right(ThisArg,1)

 ThisPos = Index(Piece3,ThisArg) /* Del */

 Piece3 = DelStr(Piece3,ThisPos,length(ThisArg)+1)

 End

 If left(ThisArg,6) = "CLASS=" then do

 V106 = right(ThisArg,1)

 ThisPos = Index(Piece3,ThisArg) /* Del */

 Piece3 = DelStr(Piece3,ThisPos,length(ThisArg)+1)

 End

 If left(ThisArg,7) = "NOTIFY=" then do

 V107 = DelStr(ThisArg,1,7)

 ThisPos = Index(Piece3,ThisArg) /* Del */

 Piece3 = DelStr(Piece3,ThisPos,length(ThisArg)+1)

 End

 End

 V199 = V199||Piece3 /* Whatever is left */

 If left(V199,1) = "," then V199 = DelStr(V199,1,1)

 If right(V199,1) = "," then V199 = DelStr(V199,length(V199),1)

Return

Page [197]

/*------------*/

/* Write the job information to the array */

/*------------*/

Proc2302:

 OpCtr = OpCtr + 1 ; OData.OpCtr = "101"||V101

 OpCtr = OpCtr + 1 ; OData.OpCtr = "102"||V102

 OpCtr = OpCtr + 1 ; OData.OpCtr = "103"||V103

 OpCtr = OpCtr + 1 ; OData.OpCtr = "104"||V104

 OpCtr = OpCtr + 1 ; OData.OpCtr = "105"||V105

 OpCtr = OpCtr + 1 ; OData.OpCtr = "106"||V106

 OpCtr = OpCtr + 1 ; OData.OpCtr = "107"||V107

 OpCtr = OpCtr + 1 ; OData.OpCtr = "199"||V199

Return

/*------------*/

/* Execute Card */

/*------------*/

Proc240:

 /* If this is the first card of a set, then the variable

 ExpectingContinuation will be "N". For all other cards, it

 will be 'Y'. */

 If ExpectingContinuation = "N" then ExecCard = Record

 Else ExecCard = ExecCard||Piece2

 If right(Record,1) = ',' then ExpectingContinuation = "Y"

 Else do /* We have read the final card */

 ExpectingContinuation = "N"

 /* Say "The entire execute statement follows" */

 /* Say ExecCard */

 Call Proc2401 /* Parse the exec statement */

 Call Proc2402 /* Write them to the array */

 End

Return

/*------------*/

/* Parse the Exec Statement */

/*------------*/

Proc2401:

 /* With the job statement, we parse the whole thing at once.

 We cannot do that with the Exec, because of operands that begin in

 a left parenthesis, like the COND. Therefore, we have to

 "break off" a piece at a time. */

 V402 = " " ; V403 = ""; V404 = "" ; V405 = "";

 V499 = "" /* Init vars */

 Parse Var ExecCard Piece1 Piece2 Piece3

 V401 = DelStr(Piece1,1,2) /* Step name */

 Piece3 = strip(Piece3)

 Do 10 /* There shouldn't be more than this */

 If left(Piece3,1) = "," then Piece3 = DelStr(Piece3,1,1)

 If left(Piece3,4) = "PGM=" then do

 Parse Var Piece3 V402 "," Piece3

 V402 = right(V402,length(V402)-4)

 End

Page [198]

 If left(Piece3,6) = "PARM='" then do

 Piece3 = DelStr(Piece3,1,6)

 Parse Var Piece3 V403 "'" Piece3

 End

 If left(Piece3,6) = "PARM=(" then do

 Piece3 = DelStr(Piece3,1,6)

 Parse Var Piece3 V403 ")" Piece3

 End

 If left(Piece3,5) = "PARM=" then do

 Parse Var Piece3 V403 "," Piece3

 V403 = right(V403,length(V403)-5)

 End

 If left(Piece3,6) = "COND=(" then do

 Piece3 = delstr(Piece3,1,6)

 Parse Var Piece3 V404 ")" Piece3

 End

 If left(Piece3,7) = "REGION=" then do

 Parse Var Piece3 V405 "," Piece3

 V405 = right(V405,length(V405)-7)

 End

 End

 V499 = V499||Piece3 /* Whatever is left */

Return

/*------------*/

/* Write the job information to the array */

/*------------*/

Proc2402:

 OpCtr = OpCtr + 1 ; OData.OpCtr = "401"||V401

 OpCtr = OpCtr + 1 ; OData.OpCtr = "402"||V402

 OpCtr = OpCtr + 1 ; OData.OpCtr = "403"||V403

 OpCtr = OpCtr + 1 ; OData.OpCtr = "404"||V404

 OpCtr = OpCtr + 1 ; OData.OpCtr = "405"||V405

 OpCtr = OpCtr + 1 ; OData.OpCtr = "499"||V499

Return

/*------------*/

/* DD Card */

/*------------*/

Proc250:

 /* If this is the first card of a set, then the variable

 ExpectingContinuation will be "N". For all other cards, it

 will be 'Y'. */

 If ExpectingContinuation = "N" then DDCard = Record

 Else DDCard = DDCard||Piece2

 If right(Record,1) = ',' then ExpectingContinuation = "Y"

 Else do /* We have read the final card */

 ExpectingContinuation = "N"

 /* Say "The entire DD statement follows" */

 /* Say DDCard */

 Call Proc2501 /* Parse the exec statement */

 Call Proc2502 /* Write them to the array */

 End

Return

/*------------*/

Page [199]

/* Parse the DD Statement */

/*------------*/

Proc2501:

 /* With the job statement, we parse the whole thing at once.

 We cannot do that with the DD, because of operands that begin in

 a left parenthesis. Therefore, we have to "break off" a piece

 at a time. */

 V501= ""; V502= ""; V503= ""; V504= ""; V505= "";

 V506= ""; V507= ""; V508= ""; V509= ""; V510= "";

 V511= ""; V512= ""; V513= ""; V514= ""; V515= "";

 V516= ""; V517= ""; V518= ""; V519= ""; V520= "";

 V521= "";

 DCBStmt= "";

 V599= "" /* Init vars */

 Parse Var DDCard Piece1 Piece2 Piece3

 V501 = DelStr(Piece1,1,2) /* DD Name */

 Piece3 = strip(Piece3)

 Do 20 /* There shouldn't be more than this */

 If left(Piece3,1) = "," then Piece3 = DelStr(Piece3,1,1)

 If left(Piece3,8) = "SYSOUT=(" then do

 Piece3 = DelStr(Piece3,1,8)

 Parse Var Piece3 V502 ")" Piece3

 End

 If left(Piece3,7) = "SYSOUT=" then do

 Parse Var Piece3 V502 "," Piece3

 V502 = right(V502,length(V502)-7)

 End

 If left(Piece3,5) = "DUMMY" then do

 Parse Var Piece3 V503 "," Piece3

 End

 If left(Piece3,4) = "DSN=" then do

 Parse Var Piece3 V504 "," Piece3

 V504 = right(V504,length(V504)-4)

 End

 If left(Piece3,7) = "DSNAME=" then do

 Parse Var Piece3 V504 "," Piece3

 V504 = right(V504,length(V504)-7)

 End

 If left(Piece3,6) = "DISP=(" then do

 Piece3 = DelStr(Piece3,1,6)

 Parse Var Piece3 V505 ")" Piece3

 End

 If left(Piece3,5) = "DISP=" then do

 Parse Var Piece3 V505 "," Piece3

 V505 = right(V505,length(V505)-5)

 End

 If left(Piece3,5) = "UNIT=" then do

 Parse Var Piece3 V506 "," Piece3

 V506 = right(V506,length(V506)-5)

 End

 If left(Piece3,6) = "SPACE=" then do

 Piece3 = DelStr(Piece3,1,6) /* Delete the string */

 Call Proc810; V507 = Result /* Call nest isolator */

Page [200]

 End

 If left(Piece3,5) = "DCB=(" then do

 Piece3 = DelStr(Piece3,1,5)

 Parse Var Piece3 DCBStmt ")" Piece3

 Call Proc2509 /* Parse the DCB statement */

 End

 If left(Piece3,4) = "DCB=" then do

 Parse Var Piece3 DCBStmt "," Piece3

 DCBStmt = right(DCBStmt,length(DCBStmt)-4)

 Call Proc2509 /* Parse the DCB statement */

 End

 If left(Piece3,6) = "LABEL=" then do

 Parse Var Piece3 V514 "," Piece3

 V514 = right(V514,length(V514)-6)

 End

 If left(Piece3,7) = "COPIES=" then do

 Piece3 = DelStr(Piece3,1,7) /* Delete the string */

 Call Proc810; V515 = Result /* Call nest isolator */

 End

 If left(Piece3,5) = "DEST=" then do

 Parse Var Piece3 V516 "," Piece3

 V516 = right(V516,length(V516)-5)

 End

 If left(Piece3,5) = "HOLD=" then do

 Parse Var Piece3 V517 "," Piece3

 V517 = right(V517,length(V517)-5)

 End

 If left(Piece3,6) = "TRTCH=" then do

 Parse Var Piece3 V518 "," Piece3

 V518 = right(V518,length(V518)-6)

 End

 If left(Piece3,8) = "OUTPUT=(" then do

 Piece3 = DelStr(Piece3,1,8)

 Parse Var Piece3 V519 ")" Piece3

 End

 If left(Piece3,7) = "OUTPUT=" then do

 Parse Var Piece3 V519 "," Piece3

 V519 = right(V519,length(V519)-7)

 End

 If left(Piece3,8) = "VOL=SER=" then do

 Parse Var Piece3 V520 "," Piece3

 V520 = right(V520,length(V520)-8)

 End

 If left(Piece3,5) = "FREE=" then do

 Parse Var Piece3 V521 "," Piece3

 V521 = right(V521,length(V521)-5)

 End

 End

 V599 = V599||Piece3 /* Whatever is left */

 /* Impose my personal styles upon the values here */

 If (left(V505,6) = ",CATLG") | ,

 (left(V505,5) = ",PASS") then V505 = "NEW"||V505

Return

/*------------*/

/* Write the job information to the array */

Page [201]

/*------------*/

Proc2502:

 OpCtr = OpCtr + 1 ; OData.OpCtr = "501"||V501

 OpCtr = OpCtr + 1 ; OData.OpCtr = "502"||V502

 OpCtr = OpCtr + 1 ; OData.OpCtr = "503"||V503

 OpCtr = OpCtr + 1 ; OData.OpCtr = "504"||V504

 OpCtr = OpCtr + 1 ; OData.OpCtr = "505"||V505

 OpCtr = OpCtr + 1 ; OData.OpCtr = "506"||V506

 OpCtr = OpCtr + 1 ; OData.OpCtr = "507"||V507

 OpCtr = OpCtr + 1 ; OData.OpCtr = "508"||V508

 OpCtr = OpCtr + 1 ; OData.OpCtr = "509"||V509

 OpCtr = OpCtr + 1 ; OData.OpCtr = "510"||V510

 OpCtr = OpCtr + 1 ; OData.OpCtr = "511"||V511

 OpCtr = OpCtr + 1 ; OData.OpCtr = "512"||V512

 OpCtr = OpCtr + 1 ; OData.OpCtr = "513"||V513

 OpCtr = OpCtr + 1 ; OData.OpCtr = "514"||V514

 OpCtr = OpCtr + 1 ; OData.OpCtr = "515"||V515

 OpCtr = OpCtr + 1 ; OData.OpCtr = "516"||V516

 OpCtr = OpCtr + 1 ; OData.OpCtr = "517"||V517

 OpCtr = OpCtr + 1 ; OData.OpCtr = "518"||V518

 OpCtr = OpCtr + 1 ; OData.OpCtr = "519"||V519

 OpCtr = OpCtr + 1 ; OData.OpCtr = "520"||V520

 OpCtr = OpCtr + 1 ; OData.OpCtr = "521"||V521

 OpCtr = OpCtr + 1 ; OData.OpCtr = "599"||V599

Return

/*------------*/

/* Parse the DCB Statement */

/*------------*/

Proc2509:

 Parse Var DCBStmt DCBTemp "," DCBStmt

 If Pos('=',DCBTemp) = 0 then V509 = DCBTemp /* Model DSCB */

 Else DCBStmt = DCBTemp||","||DCBStmt

 Do 20 /* This should be more than enough */

 If left(DCBStmt,6) = "DSORG=" then do

 Parse Var DCBStmt V510 "," DCBStmt

 V510 = right(V510,length(V510)-6)

 End

 If left(DCBStmt,6) = "RECFM=" then do

 Parse Var DCBStmt V511 "," DCBStmt

 V511 = right(V511,length(V511)-6)

 End

 If left(DCBStmt,6) = "LRECL=" then do

 Parse Var DCBStmt V512 "," DCBStmt

 V512 = right(V512,length(V512)-6)

 End

 If left(DCBStmt,8) = "BLKSIZE=" then do

 Parse Var DCBStmt V513 "," DCBStmt

 V513 = right(V513,length(V513)-8)

 End

 End

Return

/*------------*/

/* Data card */

/*------------*/

Page [202]

Proc260:

 OpCtr = OpCtr + 1 ; OData.OpCtr = "601"||JCL.I

Return

/*------------*/

/* Comment Card */

/*------------*/

Proc270:

 OpCtr = OpCtr + 1 ; OData.OpCtr = "701"||Record

Return

/*------------*/

/* Output Card */

/*------------*/

Proc280:

 OpCtr = OpCtr + 1 ; OData.OpCtr = "801"||Record

Return

/*------------*/

/* Unknown card */

/*------------*/

Proc290:

 OpCtr = OpCtr + 1 ; OData.OpCtr = "901"||Record

Return

/*------------*/

/* Write the control card file */

/*------------*/

Proc30:

 OData.0 = OpCtr

 ViewData = false

 If ViewData = true then do

 OPDSN = FixJCL.Data

 "Delete "OPDSN

 "Allocate DD(OutFile) DA("OPDSN") new space(1 1) tracks",

 "LRECL(80) Block(6160) recfm(f b) RETPD(0)"

 "ExecIO" OData.0 "DiskW OutFile (STEM OData. FINIS"

 "Free DDNAME(OutFile)"

 Say OpCtr "Records written to "OPDSN

 ADDRESS "ISPEXEC" "View Dataset("OPDSN")"

 end

Return

/*------------*/

/* Write the fixed JCL */

/*------------*/

Proc40:

 Call Proc401 /* Create the Fixed JCL array */

 Call Proc402 /* Write the array to disk */

Return

/*------------*/

/* Create the Fixed JCL Array */

/*------------*/

Proc401:

Page [203]

 OJCLCtr = 0

 Do I = 1 to OData.0

 /* Say "Proc401; i/p=" OData.I */

 RecClass = left(OData.I,1)

 RecID = left(OData.I,3)

 Text = DelStr(OData.I,1,3)

 If (RecID = 401) | (RecID = 501) | (RecID = 601) | ,

 (RecID = 701) | (RecID = 801) | (RecID = 901) then do

 /* Write the previous recordset */

 If LastClass = "1" then Call Proc40121 /* Job card */

 If LastClass = "4" then Call Proc40124 /* Step/Exec */

 If LastClass = "5" then Call Proc40125 /* DD Statement */

 End

 LastClass = RecClass

 If Text /= "" then do

 /* Set values */

 If RecClass = "1" then Call Proc40111 /* Job card */

 If RecClass = "4" then Call Proc40114 /* Step/Exec */

 If RecClass = "5" then Call Proc40115 /* DD Statement */

 End

 If RecClass = "6" | , /* Data: write ALL records */

 RecClass = "7" | , /* Comment: write ALL records */

 RecClass = "8" | , /* Output: write ALL records */

 RecClass = "9" then do /* Unknown: write ALL records */

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = Text

 Iterate

 End

 End

 /* Write the final class; it's sitting in core */

 LastClass = left(OData.OJCLCTR,1)

 If LastClass = "1" then Call Proc40121 /* Job card */

 If LastClass = "4" then Call Proc40124 /* Step/Exec */

 If LastClass = "5" then Call Proc40125 /* DD Statement */

 If LastClass = "7" then Call Proc40127 /* Comment */

Return

/*------------*/

/* Clear Values */

/*------------*/

ClearValues:

 V101=" "; V102=" "; V103=" "; V104=" "; V105=" "

 V106=" "; V107=" "; V199=" ";

 V401=" "; V402=" "; V403=" "; V404=" "; V405=" "

 V499=" ";

 V501=""; V502=""; V503=""; V504=""; V505=""

 V506=""; V507=""; V508=""; V509=""; V510=""

 V511=""; V512=""; V513=""; V514=""; V515=""

 V516=""; V517=""; V518=""; V519=""; V520=""

 V521="";

 V599="";

 SOLine = ""; USLine = ""; DCBTemp = "" ; DDLine4 = ""

Return

/*------------*/

Page [204]

/* Process Job card */

/*------------*/

Proc40111:

 If RecID = "101" then V101 = Text

 If RecID = "102" then V102 = Text

 If RecID = "103" then V103 = Text

 If RecID = "104" then V104 = "MSGLEVEL="||Text

 If RecID = "105" then V105 = "MSGCLASS="||Text

 If RecID = "106" then V106 = "CLASS="||Text

 If RecID = "107" then V107 = "NOTIFY="||Text

 If RecID = "199" then V199 = Text

Return

/*------------*/

/* Process Step/Exec card */

/*------------*/

Proc40114:

 If RecID = "401" then V401 = Text

 If RecID = "402" then V402 = "PGM="||Text

 If RecID = "403" then V403 = "PARM='"Text"'"

 If RecID = "404" then V404 = "COND=("Text")"

 If RecID = "405" then V405 = "REGION="||Text

 If RecID = "499" then V499 = Text

Return

/*------------*/

/* Process DD Card */

/*------------*/

Proc40115:

 If RecID = "501" then V501 = Text

 /* Construct the SYSOUT line */

 If RecID = "502" then do

 If Text = "," then Text = "(,)"

 V502 = "SYSOUT="Text

 SOLine = SOLine||V502

 End

 If RecID = "519" then do

 If Pos(",",Text) > 0 then Text = "("Text")"

 SOLine = SOLine",OUTPUT="Text

 End

 If RecID = "521" then do

 If Pos(",",Text) > 0 then Text = "("Text")"

 SOLine = SOLine",FREE="Text

 End

 If RecID = "503" then V503 = Text

 If RecID = "504" then V504 = "DSN="Text

 If RecID = "505" then do

 If Pos(',',Text) = 0 then V505 = "DISP="Text

 else V505 = "DISP=("Text")"

 End

 /* Construct the UNIT and SPACE line */

 If RecID = "506" then USLine = USLine"UNIT="Text

 If RecID = "507" then USLine = USLine",SPACE="Text

Page [205]

 If RecID = "508" then USLine = USLine",AVGREC="Text

 If RecID = "520" then USLine = USLine",VOL=SER="Text

 If left(USLine,1) = "," then USLine = DelStr(USLine,1,1)

 If RecID = "509" then DCBTemp = DCBTemp||Text

 If RecID = "510" then DCBTemp = DCBTemp",DSORG="Text

 If RecID = "511" then DCBTemp = DCBTemp",RECFM="Text

 If RecID = "512" then DCBTemp = DCBTemp",LRECL="Text

 If RecID = "513" then DCBTemp = DCBTemp",BLKSIZE="Text

 If left(DCBTemp,1) = "," then DCBTemp = DelStr(DCBTemp,1,1)

 /* Construct the "DD Line 4" */

 If RecID = "514" then DDLine4 = DDLine4"LABEL="Text

 If RecID = "515" then DDLine4 = DDLine4",COPIES="Text

 If RecID = "516" then DDLine4 = DDLine4",DEST="Text

 If RecID = "517" then DDLine4 = DDLine4",HOLD="Text

 If RecID = "518" then DDLine4 = DDLine4",TRTCH="Text

 If left(DDLine4,1) = "," then DDLine4 = DelStr(DDLine4,1,1)

 If RecID = "599" then V599 = Text

Return

/*------------*/

/* Write the Job card */

/*------------*/

Proc40121:

 V101 = left(V101||spaces,8)

 JC1 = "//"V101" JOB "||V102",'"V103"',"

 JC2 = "// "V104","V105","V106","V107

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1

 If V199 = "" then do

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC2

 End

 Else do

 JC2 = JC2||","

 JC3 = "// "V199

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC2

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC3

 End

 Call ClearValues;

Return

/*------------*/

/* Write the Step/Exec card */

/*------------*/

Proc40124:

 V401 = left(V401||spaces,8)

 JC1 = "//"V401" EXEC "||V402

 If V404 /= "" then JC1 = JC1","V404

 If V405 /= "" then JC1 = JC1","V405

 If V403 = "" then do

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1

 end

 else do /* There IS a parm field */

 if (length(JC1) + 1 + length(V403)) < 72 then do /* same line */

 JC1 = JC1","V403

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1

Page [206]

 end

 else do

 JC1 = JC1||","

 JC2 = "// "V403

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC2

 End

 End

 Call ClearValues;

Return

/*------------*/

/* Write the DD Card */

/*------------*/

Proc40125:

 C1=""; C2=""; C3=""; C4=""; C5=""; C6=""

 V501 = left(V501||spaces,8) /* DDName */

 C1 = strip("//"V501" DD "SOLine||V503||V504)

 /* There is almost NEVER a good reason to say DISP=(OLD,DELETE).

 At UMB, OLD,DELETE is used too frequently. Therefore,

 impose my personal preferences and replace those. */

 If left(V505,9) = "DISP=(OLD" then

 V505 = "DISP=SHR"||right(V505,length(V505)-9)

 If left(V505,8) = "DISP=OLD" then

 V505 = "DISP=SHR"||right(V505,length(V505)-8)

 If left(V505,15) = "DISP=SHR,DELETE" then

 V505 = "DISP=SHR"

 If Pos(',',DCBTemp) > 0 then DCBTemp = "DCB=("DCBTemp")"

 If ((length(C1) + 1 + length(V505)) < 72) & ,

 (V505 = "DISP=SHR") then do

 C1 = C1","V505

 C2 = strip("// "USLine)

 C3 = strip("// "DCBTemp)

 C4 = strip("// "DDLine4)

 C5 = strip("// "V599)

 end

 else do

 C2 = strip("// "V505)

 C3 = strip("// "USLine)

 C4 = strip("// "DCBTemp)

 C5 = strip("// "DDLine4)

 C6 = strip("// "V599)

 end

 Do 4

 If length(C2) < 3 then do /* The 2nd card is completely blank */

 C2 = C3; C3 = C4; C4 = C5; C5 = C6; C6 = ""

 end

 end

 /* See if we can (should) combine any JCL lines */

 If length(strip(C1)) < 16 then do

 C2 = DelStr(C2,1,11)

 C1 = C1" "C2

Page [207]

 C2 = C3; C3 = C4; C4 = C5; C5 = C6; C6 = ""

 End

 /* See which lines need continuation commas */

 If length(C2) > 2 then C1 = C1||","

 else C2 = ""

 If length(C3) > 2 then C2 = C2||","

 else C3 = ""

 If length(C4) > 2 then C3 = C3||","

 else C4 = ""

 If length(C5) > 2 then C4 = C4||","

 else C5 = ""

 If length(C6) > 2 then C5 = C5||","

 else C6 = ""

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C1

 If C2 /= "" then do

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C2

 End

 If C3 /= "" then do

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C3

 End

 If C4 /= "" then do

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C4

 End

 If C5 /= "" then do

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C5

 End

 If C6 /= "" then do

 OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C6

 End

 Call ClearValues;

Return

/*------------*/

/* Write the Fixed JCL Array to Disk */

/*------------*/

Proc402:

 OJCL.0 = OJCLCtr

 OPDSN = FixJCL.JCL

 If OJCLCtr = 0 then do

 Say "There are no records to write to" OPDSN"!"

 Return

 Exit

 End

 "Delete" OPDSN

 "Allocate DD(OutFile) DA("OPDSN") new space(1 1) tracks",

 "LRECL(80) Block(6160) recfm(f b) RETPD(0)"

 "ExecIO" OJCL.0 "DiskW OutFile (STEM OJCL. FINIS"

 "Free DDNAME(OutFile)"

 Say OJCLCtr "Records written to "OPDSN

 ADDRESS "ISPEXEC" "View Dataset("OPDSN")"

Return

/*------------*/

/* Nested operand isolator */

Page [208]

/*------------*/

/* This routine will isolate operands that are nested within

 parenthesis. It is used mainly for COPIES= and SPACE=.

 Example: Piece3=(1,(1,1,1,1)),DEST=U98,HOLD=NO,

 This routine will split Piece3 into:

 (1,(1,1,1,1)) and DEST=U98,HOLD=NO, */

Proc810:

 If left(Piece3,1) = "(" then do /* May be nested */

 ReturnStr = "(" ; Level = 1; Index = 2

 Do Until Level = 0

 If substr(Piece3,Index,1) = "(" then Level = Level + 1

 If substr(Piece3,Index,1) = ")" then Level = Level - 1

 ReturnStr = ReturnStr||substr(Piece3,Index,1)

 Index = Index + 1

 End

 Piece3 = DelStr(Piece3,1,Index)

 End

 Else Parse var Piece3 ReturnStr "," Piece3 /* No nesting */

Return ReturnStr

/*------------*/

/* End-of-job Processing */

/*------------*/

ProcEOJ:

Return

Page [209]

FX - File name cross-reference

This exec will convert JCL into a list of stepnames and datasetnames, that can be used as

somewhat of a cross-reference.

/* FX - File Cross-Reference - REXX Exec */

/* This exec will read a set of job control, parse it, and */

/* create a file, one record per datasetname, as follows: */

/* 1- 8 8 Jobname */

/* 9-16 8 Stepname */

/* 17-24 8 DDName */

/* 25-78 54 Datasetname (allowing room for PDS member name) */

/* 79-81 3 Disposition (NEW, OLD, MOD) */

/*------------- Main Body of Program ----------------------------*/

ARG IPDSN

Call Pgm_Init

Do Forever

 Call ReadRec /* Read rec into stack; count */

 If IPEOF = "YES" then Leave

 Pull Record /* Get it from the stack */

 Call IdentifyRecord /* See what kind it is */

 Call ProcessRecord /* Process it */

end

Call ProcEOJ /* EOJ Processing */

/* ADDRESS "ISPEXEC" "Browse Dataset("OPDSN")" */

Exit

/*---*/

/*------------*/

/* Program Initialization */

/*------------*/

Pgm_Init:

"DelStack"

If IPDSN = "" then do

 Say "Command Type:

Syntax: FX DSN"

 Exit

end

"Alloc DDN(InFile) DSN("IPDSN") SHR"

If RC <> 0 then do

 Say "I could not allocate "IPDSN". Sorry."

 Exit

end

Say "FX Working on " IPDSN ": " sysvar(SYSUID) Date(U) Time() "..."

OPDSN = “FX.DATAFILE”

"Free FI(OutFile)"

"Alloc DD(OutFile) DA("OPDSN") MOD space(15 15) tracks ",

 "Lrecl(81) Block(6156) Recfm(F B)"

Page [210]

If RC <> 0 then do

 Say "I could not allocate "OPDSN". Sorry."

 Exit

end

"NewStack"

IPEOF = "NO" /* Input EOF Switch */

RecType = " " /* Record Type */

Spaces = " "

Spaces = Spaces || Spaces /* Now it's 72 spaces */

JobName = "(Unk)" /* Job Name */

StepName= "(Unk)" /* Step Name */

DDName = "(Unk)" /* DDName */

RecCount = 0 /* Total Records */

Type1Ctr = 0 /* First JCL card of a set */

Type11Ctr = 0 /* Job Cards */

Type12Ctr = 0 /* DD Cards */

Type13Ctr = 0 /* EXEC cards */

Type14Ctr = 0 /* JES (output, message) cards*/

Type15Ctr = 0 /* Other JCL cards: first card*/

Type2Ctr = 0 /* JCL continuations */

Type3Ctr = 0 /* Comment card counter */

Type41Ctr = 0 /* Data card counter */

Type42Ctr = 0 /* end of Data card counter */

Type5Ctr = 0 /* end of job card */

TypeUCtr = 0 /* Unknown */

OpRecCtr = 0 /* Output Records */

DSNFound = 0 /* DSN Found */

DispFound = 0 /* Disp Found */

/*------------*/

ReadRec:

/*------------*/

 "EXECIO 1 DiskR Infile" /* Add the I/P rec to the stack */

 If RC <> 0 then do

 IPEOF = "YES"

 "EXECIO 0 DiskR Infile (Finis" /* Close the input file */

 end

 Else RecCount = RecCount + 1 /* Count the records */

 Return ""

/*------------*/

IdentifyRecord:

/*------------*/

 Part1 = Substr(record,1,2)

 Part2 = Substr(record,3,1)

 Part3 = Substr(record,3,71)

 Spaces2 = Substr(Spaces,3,71)

 If Substr(Record,1,3) = "//*" then Call Proc_Type3

 Else If Part1 = '//' & Part2 /= ' ' then Call Proc_Type1

 Else if Substr(Record,1,3) = "// " then Call Proc_Type2

 Else If Substr(Record,1,3) = "/* " then Call Proc_Type42

 Else If Part1 = '//' & Part3 = Spaces2 then

 Call Proc_Type5

 Else if Substr(Record,1,1) /= "/" then Call Proc_Type41

 Else if Substr(Record,1,9) = "/*MESSAGE" then ,

 Type14Ctr = Type14Ctr + 1

Page [211]

 Else if Substr(Record,1,3) = "/*$" then ,

 Type14Ctr = Type14Ctr + 1

 Else if Substr(Record,1,7) = "/*ROUTE" then ,

 Type14Ctr = Type14Ctr + 1

 Else if Substr(Record,1,8) = "/*NOTIFY" then ,

 Type14Ctr = Type14Ctr + 1

 Else Call Proc_Type_Unk

 Return

Proc_Type1: /* - First JCL cards read */

 RecType = "1 "

 Type1Ctr = Type1Ctr + 1

 FirstBlk = Pos(' ',Record)

 TempRecord = Delstr(Record,1,FirstBlk)

 TempRecord = Strip(TempRecord,L)

 FirstBlk = Pos(' ',TempRecord)

 JCLType = SubStr(TempRecord,1,FirstBlk-1)

 If JCLType = "JOB" then do

 RecType = "11 "

 Type11Ctr = Type11Ctr + 1

 FirstBlk = Pos(' ',Record)

 JobName = SubStr(Record,3,FirstBlk-1)

 end

 else If JCLType = "DD" then do

 RecType = "12 "

 Type12Ctr = Type12Ctr + 1

 FirstBlk = Pos(' ',Record)

 DDName = SubStr(Record,3,FirstBlk-1)

 Call FindDSN; Call FindDisp

 end

 else If JCLType = "EXEC" then do

 RecType = "13 "

 Type13Ctr = Type13Ctr + 1

 FirstBlk = Pos(' ',Record)

 StepName = SubStr(Record,3,FirstBlk-1)

 end

 else If JCLType = "OUTPUT" then do

 RecType = "14 "

 Type14Ctr = Type14Ctr + 1

 end

 else do

 RecType = "15 "

 Type15Ctr = Type15Ctr + 1

 end

Return

Proc_Type2: /*- JCL continuation cards read */

 RecType = "2 "

 Type2Ctr = Type2Ctr + 1

 Call FindDSN; Call FindDisp

Return

Proc_Type3: /*- Comment cards read */

 RecType = "3 "

 Type3Ctr = Type3Ctr + 1

Return

Page [212]

Proc_Type41: /*- Data cards read */

 RecType = "41 "

 Type41Ctr = Type41Ctr + 1

Return

Proc_Type42: /*- End of Data cards read */

 RecType = "42 "

 Type42Ctr = Type42Ctr + 1

Return

Proc_Type5: /*- end of job cards read */

 RecType = "5 "

 Type5Ctr = Type5Ctr + 1

Return

Proc_Type_Unk: /* Unknown type */

 RecType = "? "

 TypeUCtr = TypeUCtr + 1

 Say "Unknown; number " RecCount " was read; Type " RecType,

 " record follows:"

 Say Record

 Say "---"

Return

/* Find the datasetname */

FindDSN:

 DSNLoc = Index(Record,"DSN=")

 If DSNLOC > 0 then do

 TempRec = Delstr(Record,1,DSNLOC+3) /* Delete past dsn= */

 FirstBlk = Pos(' ',TempRec)

 FirstCom = Pos(',',TempRec)

 If FirstCom = 0 then FirstCom = 80 /* In case no comma */

 If FirstBlk < FirstCom then EndPos = FirstBlk

 Else EndPos = FirstCom

 If EndPos = 0 then do

 Say "FindDSN error: " Record

 end

 DSN = SubStr(TempRec,1,EndPos-1)

 DSN = substr(DSN||Spaces,1,54)

 DSNFound = DSNFound + 1

 OPRecPending = "YES"

 end

Return

/* Find the dataset disposition */

FindDisp:

 DispLoc = Index(Record,"DISP=")

 If DispLOC > 0 then do

 TempRec = Delstr(Record,1,DispLOC+4) /* Delete past Disp= */

 FirstBlk = Pos(' ',TempRec)

 EndPos = FirstBlk

 Disp = SubStr(TempRec,1,EndPos-1)

 DispFound = DispFound + 1

 OPRecPending = "YES"

 If substr(Disp,1,2) = "(," then Disp = "NEW"

 else If substr(Disp,1,5) = "SHARE" then disp = "SHR"

 else If substr(Disp,1,4) = "(OLD" then disp = "OLD"

Page [213]

 else If substr(Disp,1,4) = "(MOD" then disp = "MOD"

 else If substr(Disp,1,4) = "(NEW" then disp = "NEW"

 end

Return

/*------------*/

/* Process the Record */

/*------------*/

ProcessRecord:

If OPRecPending = "YES" then do

 If Substr(RecType,1,1) /= '2' then do

 Jobname= substr(Jobname||Spaces,1,8)

 Stepname= substr(Stepname||Spaces,1,8)

 DDName = substr(DDName||Spaces,1,8)

 OPRec = Jobname||StepName||DDName||DSN||Disp

 OpRecPending = "NO"

 OpRecCtr = OpRecCtr + 1

 Push OpRec

 "EXECIO" 1 "DiskW OutFile"

 end

end

Return

/*------------*/

/* End-of-job Processing */

/*------------*/

ProcEOJ:

 "DelStack"

 "Free DDNAME(InFile)"

 "EXECIO" 0 "DiskW OutFile (Finis" /* Close the file */

 Queue "*** End of Job Totals for " IPDSN "***"

 Queue RecCount "records read"

 Queue " "Type1Ctr "First JCL cards read"

 Queue " "Type11Ctr "- Job cards"

 Queue " "Type12Ctr "- DD cards"

 Queue " "Type13Ctr "- EXEC cards"

 Queue " "Type14Ctr "- JES (OUTPUT, MESSAGE) cards"

 If Type15Ctr > 0 then Queue " "Type15Ctr "- other JCL cards"

 Queue " "Type2Ctr "JCL continuation cards read"

 Queue " "Type3Ctr "Comment cards read"

 Queue " "Type41Ctr "Data cards read"

 Queue " "Type42Ctr "End of Data cards read"

 Queue " "Type5Ctr "end of job cards read"

 If TypeUCtr > 0 then Queue " "TypeUCtr "Unknown cards read"

 If TypeUCtr > 0 then Say,

 "Warning: " TypeUCtr "Unknown cards read"

 Queue OpRecCtr "records written"

 OPDSN = FX.LOGFILE

 "Free FI(LogFile)"

 "Alloc DD(LogFile) DA("OPDSN") MOD space(15 1) tracks ",

 "Lrecl(73) Block(6205) Recfm(F B)"

 If RC <> 0 then do

 Say "I could not allocate "OPDSN". Sorry."

 Exit

 end

 Quantity = queued()

 "EXECIO " Quantity " DiskW LogFile (Finis"

Page [214]

Return

Page [215]

Guess – Guess the Number
This is an example of a game where the computer picks a number, and you have to guess it in the

fewest tries possible. You are rewarded with feedback after the game.

/* Guess - Guess the Number REXX */

/* This is a Rexx learning exercise */

/* Guess the computer-generated number in the fewest number of turns.*/

PName = "" /* Player Name */

Turn = 1

Say "Welcome to the Guess the Number. I have chose a number between"

Say "000 and 1000, exclusive. See how long it takes you to guess what"

Say "number I have chosen."

Say " "

Say "Player, please tell me your name!"

Pull PName

Upper PName

Redo:

Guesses = 0 /* Number of guesses */

CNo = Random(1,999) /* Computer number */

/* Say "The computer picked number " CNo */

InProgress = Y

PNumber = 0 /* Player number */

Lower = 0

Upper = 1000

Do While InProgress = Y

 Say PName", pick a number between " Lower " and " Upper "."

 ReAsk = N

 Pull PNumber

 If (PNumber <= Lower) | (PNumber >= Upper) then do

 Say "Dummy! I said between " Lower " and "Upper "! Try again!"

 ReAsk = Y

 End

 If ReAsk = Y then

 Turn = 1

 else do

 Guesses = Guesses + 1

 If CNo = PNumber then do

 InProgress = N

 Call Recap

 Leave

 End

 Else do

 If PNumber < CNo then Lower = PNumber

 If PNumber > CNo then Upper = PNumber

 End

 End

End

Say "Again?"

Pull Ans

Page [216]

Upper Ans

If Ans = Y then signal ReDo

exit

Recap:

 Say "You guessed it," PName"!"

 Select

 When Guesses = 1 then

 Say "One guess! Buy a Powerball ticket, quick!"

 When Guesses = 2 then

 Say "Two guesses! Buy a lottery ticket, quick!"

 When Guesses = 3 then

 Say "Three guesses! Are you sitting on a horseshoe?"

 When Guesses = 4 then

 Say "Four guesses! You got lucky!"

 When Guesses = 5 then

 Say "Five guesses! That's phenomenal!"

 When Guesses = 6 then

 Say "Six guesses! That's excellent!"

 When Guesses = 7 then

 Say "Seven guesses! Very good!"

 When Guesses = 8 then

 Say "Eight guesses! That's pretty good!"

 When Guesses = 9 then

 Say "Nine guesses. That's about average."

 When Guesses = 10 then

 Say "Ten guesses. That's a little under average."

 When Guesses = 11 then

 Say "Eleven guesses? Don't go to the racetrack!"

 When Guesses = 12 then

 Say "Twelve guesses? That's pretty poor!"

 Otherwise

 Say Guesses" guesses! Have you ever heard of a binary search?"

 End

 Adjective = "only"

 Spread = (Upper - Lower)

 If Spread > 10 then Adjective = ""

 If Spread > 25 then Adjective = "a Whopping"

 Say "The spread was" Adjective Spread

 Numeric Digits 4

 Points = Spread * 100/Guesses

 Say "For this game, you get "Points" points."

Return

Page [217]

HD - Hex Dump

This command will hex dump a sequential file.

/* REXX PROGRAM */

/* HD - HEX DUMP A SEQUENTIAL FILE IN HEX */

ARG IPDsn NUMRECS OPDsn

/* CHECK COMMAND LINE ARGUMENTS */

IF IPDsn = '' THEN DO

 SAY 'COMMAND TYPE:

SYNTAX: HD IPDsn NUMRECS OPDSN'

 EXIT

END

/* Some users have turned off their Profile Prefix. */

/* If that is the case with this user, then prefix the OP DSN with */

/* his userid */

If SYSVAR(SYSPREF) = "" then

 DSNPref = USERID()||"."

Else

 DSNPref = ""

IF OPDsn = '' THEN DO

 OPDsn = DSNPREF || "HD.OUTLIST"

END

IF NUMRECS = '' THEN

 NUMRECS = 999999

/* SET OUR CONSTANTS */

DFL = 100 /* FRAGMENT LENGTH OF ONE LINE

*/

TESTING = N /* TEST CODE WILL BE EXECUTED

*/

SCALE1 = ' 1 2 3 4 5 6'

scale1 = scale1 || ' 7 8 9 10'

SCALE2 = COPIES('....5....0',10)

SAY 'WORKING...'

DUMMY = LISTDSI(IPDsn)

INFLRECL = SYSLRECL

IF INFLRECL > DFL THEN DO

 RECSEGS = TRUNC(INFLRECL/DFL,0) /* NO. OF RECORD SEGMENTS */

 IF INFLRECL/DFL > TRUNC(INFLRECL/DFL,0) THEN

 RECSEGS = RECSEGS + 1

 RECSEGL = DFL /* SEGMENT LENGTH */

 RECSEGLAST = INFLRECL // RECSEGL /* LAST SEGMENT LENGTH */

END

ELSE DO

 RECSEGS = 1 /* NO. OF RECORD SEGMENTS */

 RECSEGL = INFLRECL /* SEGMENT LENGTH */

 RECSEGLAST = INFLRECL /* SEGMENT LENGTH */

END

Page [218]

SAY '*** HD - HEXDUMP, VERS 1.0 ***'

SAY 'IPDsn: ' IPDsn '; LRECL = ' INFLRECL

SAY 'OPDsn: ' OPDsn

IF TESTING = Y THEN DO

 SAY 'NO. OF SEGMENTS TO DISPLAY FOR EACH RECORD: ' RECSEGS

 SAY 'SEGMENT LENGTH: ' RECSEGL

 SAY 'LAST SEGMENT LENGTH: ' RECSEGLAST

END

"ALLOCATE DDNAME(INFILE) DSN(" IPDsn ") SHR "

"DELETE " OPDsn

"ALLOCATE DDNAME(OUTFILE) DSN(" OPDsn ") NEW SPACE(20,20)" ,

 "BLOCK(6171) UNIT(SYSDA) LRECL(121) RECFM(F B)"

"NEWSTACK"

"EXECIO * DISKR INFILE (STEM INFILE. FINIS"

SAY 'INPUT FILE SIZE:' INFILE.0 'RECORDS.'

QUEUE ' DUMP OF DSN:' IPDsn

IF NUMRECS > INFILE.0 THEN

 NUMRECS = INFILE.0

SAY 'DUMPING ' NUMRECS 'RECORDS'

DO I = 1 TO NUMRECS

 ISTR = FORMAT(I,3,0)

 DO J = 1 TO RECSEGS

 SSTR = FORMAT(J,1,0)

 RC = ((J-1)*DFL)+1

 SC = RC // 100

 IF J = RECSEGS THEN

 THISRSL = RECSEGLAST

 ELSE

 THISRSL = RECSEGL

 QUEUE ' 'SUBSTR(SCALE1,SC,THISRSL)

 QUEUE ' 'SUBSTR(SCALE2,SC,THISRSL)

 THISPORTION = SUBSTR(INFILE.I,RC,THISRSL)

 QUEUE ISTR'.'SSTR 'CHAR' THISPORTION

 /* WORK ON THE ZONE PORTION */

 WORKPORTION = C2X(THISPORTION)

 THISPORTIONZONE = ' '

 DO K = 1 TO (THISRSL*2) BY 2

 THISPORTIONZONE = THISPORTIONZONE SUBSTR(WORKPORTION,K,)

 THISPORTIONZONE = SPACE(THISPORTIONZONE,0)

 END

 QUEUE ISTR'.'SSTR' ZONE' THISPORTIONZONE

 /* WORK ON THE NUMERIC PORTION */

 WORKPORTION = C2X(THISPORTION)

 THISPORTIONNUMR = ' '

 DO K = 2 TO (THISRSL*2) BY 2

 THISPORTIONNUMR = THISPORTIONNUMR SUBSTR(WORKPORTION,K,)

 THISPORTIONNUMR = SPACE(THISPORTIONNUMR,0)

 END

 QUEUE ISTR'.'SSTR' NUMR' THISPORTIONNUMR

 END

 QUEUE ' '

 HOW_MANY = QUEUED()

 "EXECIO" HOW_MANY "DISKW OUTFILE"

Page [219]

END

"EXECIO" 0 "DISKW OUTFILE (FINIS" /* CLOSE THE FILE */

"FREE DDNAME(INFILE OUTFILE)"

SAY 'DUMP COMPLETE. CHECK ' OPDsn

"ISPEXEC BROWSE DATASET(" OPDsn

Page [220]

INIT - Establish my TSO environment

 I use this Rexx exec to establish my TSO environment: allocate my Rexx libraries, tellme

what the temperature is, etc.

/* Init - TSO Session Initialization - REXX EXEC */

Address TSO

"Free Fi(SYSEXEC)"

"Alloc Fi(SYSEXEC) DA('GRUND.TSTREXX.EXEC' 'GRUND.REXX.EXEC') SHR "

Say;Say;Say /* Start at the top of the screen */

Say "Hello, and welcome to TSO, courtesy of David Grund's INIT EXEC."

Say "Today is" Date(W) Date(U) "; julian is " substr(Date(J),3,3)

MoNum = substr(Date(U),1,2)

If Monum = 1 then Do; Low = 0; High = 55; end

If Monum = 2 then Do; Low = 0; High = 60; end

If Monum = 3 then Do; Low = 15; High = 65; end

If Monum = 4 then Do; Low = 35; High = 80; end

If Monum = 5 then Do; Low = 45; High = 85; end

If Monum = 6 then Do; Low = 50; High = 90; end

If Monum = 7 then Do; Low = 55; High = 95; end

If Monum = 8 then Do; Low = 55; High = 95; end

If Monum = 9 then Do; Low = 50; High = 90; end

If Monum = 10 then Do; Low = 30; High = 85; end

If Monum = 11 then Do; Low = 10; High = 75; end

If Monum = 12 then Do; Low = 0; High = 60; end

Temp = Random(Low,High)

Say "The temperature right now is " Temp

TSOMSG = "I executed your INIT exec on " || Date(W) Date(U) "at" Time(C)

TSOMSG = TSOMSG || ", Dave"

"Send '"TSOMSG || "' U(GRUND) LOGON NoWait"

InitSPF

Page [221]

INITSPF - Establish my ISPF environment

 I use this command to establish my ISPF environment, which is mainly to allocate my

test ISPF libraries in front of the production ones.
/* InitSPF - REXX EXEC */

/* Initialize personal ISPF environment */

UserID = SYSVAR(SYSUID)

Say "Initializing personal ISPF environment..."

Address TSO

/* Allocate panel libraries */

"Free Fi(ISPPLIB)"

"Alloc Fi(ISPPLIB) DA('GRUND.ISPF.PANELS' " ,

 " 'ISR.IBM.ISRPLIB' " ,

 " 'ISP.IBM.ISPPLIB' ," ,

 " 'ISR.PRODUCT.ISRPLIB') SHR "

/* Allocate message libraries */

"Free Fi(ISPMLIB)"

"Alloc Fi(ISPMLIB) DA('GRUND.ISPF.MESSAGES'" ,

 " 'ISR.UP.ISRMLIB' " ,

 " 'ISR.IBM.ISRMLIB' " ,

 " 'ISP.IBM.ISPMLIB' ," ,

 " 'ISR.PRODUCT.ISRMLIB') SHR "

/* Allocate input table libraries */

"Free Fi(ISPTLIB)"

"Alloc Fi(ISPTLIB) DA('GRUND.ISPF.TABLES' " ,

 " 'ISR.IBM.ISRTLIB' " ,

 " 'ISP.IBM.ISPTLIB') SHR "

/* Allocate output table libraries */

"Free Fi(ISPTABL)"

"Alloc Fi(ISPTABL) DA('GRUND.ISPF.TABLES') SHR"

/* Allocate skeleton libraries */

"Free Fi(ISPSLIB)"

"Alloc Fi(ISPSLIB) DA('GRUND.ISPF.SKELETON'" ,

 " 'ISR.IBM.ISRSLIB' " ,

 " 'ISP.IBM.ISPSLIB' " ,

 " 'ISR.PRODUCT.ISRSLIB') SHR "

Say "...Done"

Page [222]

JOBCARD - Create a jobcard

 I use this exec to add a standard job card to my JCL

/* JOBCARD - ISPF Edit Macro (REXX EXEC) */

ADDRESS "ISREDIT" "MACRO PROCESS"

address "ISREDIT" "(XDSN)=DATASET"

address "ISREDIT" "(XMEM)=MEMBER"

J01 = "//"sysvar(sysuid)"A JOB (accounting info),@DAVID GRUND@, "

J021 = "// MSGLEVEL=1,MSGCLASS=C,CLASS=C,PASSWORD=,TIME=1, "

J022 = "// USER=" || Sysvar(sysuid) || ",NOTIFY=" || Sysvar(Sysuid)

J031 = "//*-----------------------------------"

J032 = "--------------------------------*"

J03 = J031 || J032

J04 = "//* CREATED BY JOBCARD MACRO" date(U) time()

J05 = "//* THIS JOB SUBMITTED FROM &XDSN(&XMEM)"

J06 = "//* ** JOB STEPS **"

J07 = "//* STEP010 - IEHGOD00 - DO ANYTHING YOU WISH"

J08 = "//* "

J09 = "// JCLLIB ORDER=(GRUND.INCLUDE.JCL)"

J10 = "//STEP010 EXEC PGM=IEHGOD00,REGION=640K"

address "ISREDIT" "LINE_AFTER 00 = " "'"J01"'"

address "ISREDIT" "LINE_AFTER 01 =" "'"J021"'"

address "ISREDIT" "LINE_AFTER 02 =" "'"J022"'"

address "ISREDIT" "LINE_AFTER 03 =" "'"J03"'"

address "ISREDIT" "LINE_AFTER 04 =" "'"J04"'"

address "ISREDIT" "LINE_AFTER 05 =" "'"J05"'"

address "ISREDIT" "LINE_AFTER 06 =" "'"J03"'"

address "ISREDIT" "LINE_AFTER 07 =" "'"J06"'"

address "ISREDIT" "LINE_AFTER 08 =" "'"J07"'"

address "ISREDIT" "LINE_AFTER 09 =" "'"J03"'"

address "ISREDIT" "LINE_AFTER 10 =" "'"J09"'"

address "ISREDIT" "LINE_AFTER 11 =" "'"J08"'"

address "ISREDIT" "LINE_AFTER 12 =" "'"J03"'"

address "ISREDIT" "LINE_AFTER 13 =" "'"J07"'"

address "ISREDIT" "LINE_AFTER 14 =" "'"J03"'"

address "ISREDIT" "LINE_AFTER 15 =" "'"J10"'"

/* NOW PUT ASTERISKS IN COL 71 IN LINES 4 THRU 8 */

ADDRESS "ISREDIT" "LABEL 4 = .LSTART "

ADDRESS "ISREDIT" "LABEL 8 = .LEND "

ADDRESS "ISREDIT" "CHANGE ' ' '*' 71 .LSTART .LEND ALL"

ADDRESS "ISREDIT" "RESET"

/* I can't get apostrophes around the name to begin with */

/* because of syntax restrictions. So do it now. */

ADDRESS "ISREDIT" "LABEL 1 = .LONLY "

ADDRESS "ISREDIT" "CHANGE '@' ''' .LONLY .LONLY ALL"

ADDRESS "ISREDIT" "Cursor = 1 0"

address "ISREDIT" "LINE_AFTER 0 = NoteLine",

 "'"Jobcard generated."'"

address "ISREDIT" "LINE_AFTER 15 = NoteLine",

 "'--'"

Page [223]

LA - List TSO allocations

 This Rexx exec will list the TSO allocations and write them to a dataset. It will then edit

that dataset using ISPF macro LAE (included below).

/* LA - Create a List of TSO Allocations - Rexx Exec */

Dummy = OutTrap("output_line.","*")

"LISTA SY ST"

NumLines = OutPut_Line.0

Say NumLines "lines were created"

Dummy = OutTrap("OFF")

/* Move the line with the DDNAME above the first datasetname

 that it is concatenated to. It is currently below. */

Do I = 1 to NumLines

 Piece1 = SubStr(OutPut_Line.I,1,2)

 Piece2 = SubStr(OutPut_Line.I,3,1)

 Piece3 = SubStr(OutPut_Line.I,12,4)

 If Piece1 = ' ' & ,

 Piece2 ¬= ' ' & ,

 Piece3 = 'KEEP' then do

 J = I - 1

 SaveLine = OutPut_Line.I

 Output_Line.I = OutPut_Line.J

 Output_Line.J = SaveLine

 end

end

/* Many users have the TSO profile set to NoPrefix */

/* Account for that here. */

If SYSVAR(SYSPREF) = '' then do

 "profile prefix(" userid() ")"

 TurnPrefixBackOff = 1

end

Else

 TurnPrefixBackOff = 0

"Delete la.list"

"Allocate DD(LAList) DA(LA.List) new space(1 1) tracks",

 "LRECL(80) Block(5600) recfm(f b) RETPD(0)"

"ExecIO" OutPut_line.0 "DiskW LAList (STEM OutPut_Line. FINIS"

"Free DDNAME(LaList) DA(La.List)"

ADDRESS "ISPEXEC" "EDIT Dataset(La.List) Macro(LAE)"

ADDRESS "TSO"

If TurnPrefixBackOff = 1 then

 "Profile Noprefix"

Page [224]

LAE - ISPF Edit macro for LA
/* LAE - Edit macro for LA - Rexx Exec */

ADDRESS "ISREDIT" "MACRO PROCESS"

ADDRESS "ISREDIT" "EXCLUDE ALL --DDNAME 1"

ADDRESS "ISREDIT" "EXCLUDE ALL ' keep' 1 "

ADDRESS "ISREDIT" "Delete ALL X"

ADDRESS "ISREDIT" "C 'KEEP' '--------------' word all 12"

Page [225]

LOTTERY - Pick Lottery Numbers

/* Lottery - Pick a Lottery Number - Rexx Exec */

/* This program will pick a lottery number for you */

Arg Game

Call Init /* Init Program */

Call Main /* Mainline */

Exit

/*------------*/

/* Program Initialization */

/*------------*/

Init:

 If Game = "" then do

 Say "Which game do you want numbers for?"

 Say "The choices are: 1)Pick3 2)PowerBall 3)Show Me Five"

 Pull Game

 End

 If (Game = 1) | (Game = 2) | (Game = 3) then Return

 Say Game "is an invalid selection!"

 Exit

Return

/*------------*/

/* Mainline */

/*------------*/

Main:

 /* Pick 3 */

 If Game = 1 then do

 Number1 = Random(0,9)

 Number2 = Random(0,9)

 Number3 = Random(0,9)

 Say "The Pick3 numbers I have selected are:",

 Number1 Number2 Number3

 End

 /* PowerBall */

 If Game = 2 then do

 Number1 = Random(1,49)

 Number2 = Number1

 Do While Number2 = Number1

 Number2 = Random(1,49)

 End

 Number3 = Number1

 Do While (Number3 = Number1) | (Number3 = Number2)

 Number3 = Random(1,49)

 End

 Number4 = Number1

Page [226]

 Do While (Number4 = Number1) | (Number4 = Number2) | ,

 (Number4 = Number3)

 Number4 = Random(1,49)

 End

 Number5 = Number1

 Do While (Number5 = Number1) | (Number5 = Number2) | ,

 (Number5 = Number3) | (Number5 = Number4)

 Number5 = Random(1,49)

 End

 Number6 = Random(1,42)

 Say "The Powerball numbers I have selected are:",

 Number1 Number2 Number3 Number4 Number5 "PB:"Number6

 End

 /* Show Me Five */

 If Game = 3 then do

 Number1 = Random(1,30)

 Number2 = Number1

 Do While Number2 = Number1

 Number2 = Random(1,30)

 End

 Number3 = Number1

 Do While (Number3 = Number1) | (Number3 = Number2)

 Number3 = Random(1,30)

 End

 Number4 = Number1

 Do While (Number4 = Number1) | (Number4 = Number2) | ,

 (Number4 = Number3)

 Number4 = Random(1,30)

 End

 Number5 = Number1

 Do While (Number5 = Number1) | (Number5 = Number2) | ,

 (Number5 = Number3) | (Number5 = Number4)

 Number5 = Random(1,30)

 End

 Say "The Show Me Five numbers I have selected are:",

 Number1 Number2 Number3 Number4 Number5

 End

Return

Page [227]

ListDSI - List Dataset Information

/* ListDSI - List Dataset information REXX */

Arg Datasetname

RC = listdsi(datasetname)

If RC = 0 then do

 Say "Allocation was successful."

 Say "SYSADirBlk="SYSADirBlk

 Say "SYSALLOC="SYSALLOC

 Say "SYSBLKSIZE="SYSBLKSIZE

 Say "SYSCreate="SYSCreate

 Say "SYSDSorg="SYSDSOrg

 Say "SYSDSName="SYSDSName

 Say "SYSExtents="SYSExtents

 Say "SYSExDate="SySExDate

 Say "SYSKEYLEN="SYSKEYLEN

 Say "SYSLRECL="SYSLRECL

 Say "SYSMembers="SYSMembers

 Say "SYSPassword="SYSPassword

 Say "SYSPrimary="SYSPrimary

 Say "SYSRefDate="SYSRefDate

 Say "SYSRACFA="SYSRACFA

 Say "SYSRECFM="SYSRECFM

 Say "SYSSeconds="SYSSeconds

 Say "SYSTrksCyl="SYSTrksCyl

 Say "SYSUnit="SYSUnit

 Say "SYSUnits="SYSUnits

 Say "SYSUpdated="SYSUpdated

 Say "SYSUSED="SYSUSED

 Say "SYSVolume="SYSVolume

End

Else do

 Say "Return code = " RC

 Say "SYSReason="SYSReason

 Say "SYSMSGLVL1="SYSMsgLvl1

 Say "SYSMSGLVL2="SYSMsgLvl2

End

Page [228]

LPDSIX - List a PDS Index to a Sequential File

 This command will list the members of a PDS out to a sequential dataset for subsequent

editing.

/* LPDSIX - List a PDS Index to a Sequential File */

Arg PDSName

Call Proc01 /* Program Initialization */

Call Proc02 /* List Members to an array */

Call Proc03 /* Create the sequential file array */

Call Proc99 /* Finalization */

Exit

/*--*/

/* Called Procedures */

/*--*/

/*------------*/

/* Program Initialization */

/*------------*/

Proc01:

 Say "LPDSIX - List a PDS Index to Sequential File"

 Say "Proceeding..."

 If PDSName = '' then do

 Say "PDSName not specified"

 Exit(16)

 End

 Prefix = sysvar(SYSUID)

 /* Say "The datasetname is " PDSName */

Return

/*------------*/

/* List Members to an array */

/*------------*/

Proc02:

 TmStart = Time(S)

 Say "Listing "PDSName" Members..."

 Dummy = OutTrap("Members.","*")

 "LISTD "PDSName" M "

 Dummy = OutTrap("OFF")

 NumMembers = Members.0

 If NumMembers < 2 then do

 Say "No members found: problem?"

 Exit(16)

 End

 AdjMembers = NumMembers - 6 /* Don't count the first six blanks */

 Say AdjMembers PDSName "names were found"

 TmEnd = Time(S)

 TmDur = TmEnd - TmStart

 Say "That took " TmDur "seconds!"

Return

/*------------*/

/* Create the sequential file array */

Page [229]

/*------------*/

Proc03:

 Do I = 1 to NumMembers

 Members.I = strip(Members.I)

 OrigMemname = left(Members.I,8)

 End

 OPDSN = "LPDSIX.Work"

 Dummy = OutTrap("Junk.","*")

 /* Allocate the sequential output file */

 Address TSO

 "Delete " OPDSN

 "Free FI(SeqFil)"

 Dummy = OutTrap("OFF")

 "ALLOC F(SeqFil) DA("OPDSN") NEW UNIT(SYSDA) DSORG(PS)",

 "SPACE(45 45) Tracks LRECL(88) BLKSIZE(6160) RECFM(F,B)"

 'EXECIO' NumMembers 'DISKW SeqFil (STEM Members. FINIS'

 "Free FI(SeqFil)"

Return

/*------------*/

/* Finalization */

/*------------*/

Proc99:

 Say OPDSN "created. LPDSIX complete :)"

Return

Page [230]

Prime – Calculate Prime Numbers
This is an exec that will calculate prime numbers. If you want more or less, you can easily

change the upper and lower limits.

/* Prime - Calculate Prime Numbers REXX */

/* Written by David Grund, January, 2005 */

Lowest = 000005 /* This MUST be an odd number! */

Highest = 030000

Nth = 200 /* Displaying every nth one */

STime = time(E)

Quantity = 0

Say "Calculating prime numbers from "Lowest" to "Highest

Say " and displaying every "Nth"th one."

Do I = Lowest to Highest by 2

 Do J = 3 to I - 1 by 2

 /* Say "A: I="I"; J="J"; I mod J=" I // J */

 Quotient = I // J

 If Quotient = 0 then Leave

 End

 If Quotient <> 0 then do

 Quantity = Quantity + 1

 If Quantity // Nth = 0 then Say I "is a prime number; #"Quantity

 End

End

Say "I found "Quantity" prime numbers altogether."

ETime = time(E)

Say "This took "trunc((ETime - STime),2)" seconds."

Page [231]

PROCSYMS - Perform Symbolic Substitution

/* ProcSyms - ISPF Edit Macro REXX EXEC */

/* This macro is used to perform symbolic substitution on a set of */

/* JCL that calls a proc. */

/* 1) Put all symbolics from the PROC statement into an array */

/* 2) For testing, list the array */

/* 3) Copy the array to a change command array */

/* 4) Execute the change command array */

Address "ISREDIT" "MACRO PROCESS"

Address "ISREDIT"

Call Proc01 /* Put Symbs and Vals => arrays*/

Call Proc02 /* List the arrays */

Call Proc03 /* Create the change arrays */

/* l Proc04 */ /* List the change arrays */

Call Proc05 /* Execute the changes */

Exit

/*-----------*/

/* Proc01 - Put all the symbolics and values from the PROC statement */

/* into arrays. */

/*-----------*/

Proc01:

 Address "ISREDIT"

 "Exclude All '//*' 1"

 "Find ' PROC ' All NX"

 "ISREdit (NumFnd,Junk) = Find_Counts"

 If NumFnd = 0 then do

 zedsmsg = "'Not a PROC"

 zedlmsg = "I did not find a PROC statement in this member"

 Address ISPExec

 "SETMSG MSG(ISRZ000)"

 Exit

 End

 If NumFnd > 1 then do

 zedsmsg = "Too many"

 zedlmsg = "I found "NumFnd" PROC statements.",

 "I don't know how to process more than one."

 Address ISPExec

 "SETMSG MSG(ISRZ000)"

 Exit

 End

 /* At this point, we are looking at a line with the word 'PROC' */

 ProcLine = 'Y' /* This is the PROC line */

 "(CurrLine) = LINE .ZCSR" /* Read the line that the cursor is on */

 CurrLine = left(CurrLIne,72) /* Drop off the sequence number*/

 'ISREDIT (CLineNo,x) = CURSOR' /* save cursor position */

 Say "The input line is "CurrLine

 SymArray.0 = 0 ; ValArray.0 = 0 /* Init Sym and Value arrays */

 NextEnt = 0 /* Next array entry number */

Page [232]

 StillIn = 'Y' /* Set continue processing sw */

 Do while StillIn = 'Y'

 /* Parse the line into operands */

 Parse var CurrLine Operand1 Operand2 Operand3 Operand4

 Say " Operand 1="Operand1

 Say " Operand 2="Operand2

 Say " Operand 3="Operand3

 Say " Operand 4="Operand4

 If ProcLine = 'Y' then do /* If this is the 'PROC' line, */

 Params = Operand3 /* Params are operand 3 */

 ProcLine = 'N'

 End

 Else

 Params = Operand2 /* Params are operand 2 */

 Params = strip(Params)

 If right(Params,1) = ',' then do /* end in comma? */

 LastLine = 'N' /* Off ind: this is not last */

 Params = left(Params,length(Params)-1) /* Remove the comma */

 End

 Else

 LastLine = 'Y' /* Set indicator */

 Do while length(Params) > 0

 Call Proc011 /* Get the next Parameter */

 End

 If LastLine = 'Y' then /* If this is the last line, */

 StillIn = 'N' /* we are done */

 Else do /* otherwise */

 CLineNo = CLineNo + 1 /* Bump line number */

 "(CurrLine) = LINE "ClineNo /* Read the next line down */

 CurrLine = left(CurrLIne,72) /* Drop off the seq number */

 End

 End

Return

/*-----------*/

/* Get the Next Symbolic Parameter and Value */

/*-----------*/

Proc011:

 /* First handle the Symbolic */

 Pos = Index(Params,'=') /* Point to the equals sign */

 If Pos = 0 then do /* No more params on this line*/

 Params = "" /* Reduce the line to nothing */

 Return

 End

 ThisSym = left(Params,Pos-1)

 /* Say "Trace: ThisSym="ThisSym */

 NextEnt = NextEnt + 1

 SymArray.NextEnt = ThisSym

 SymArray.0 = NextEnt

 Params = DelStr(Params,1,length(ThisSym)+1)

 /* Say "The remainder of the line is" Params */

 /* Now handle the value */

Page [233]

 Params = Params||" " /* Add a space, just in case */

 If left(Params,1) = "'" then do /* Delimiter is an apostrophe*/

 Params = Delstr(Params,1,1) /* Delete the first one */

 EndPos = Index(Params,"'")

 If EndPos = 0 then do

 Say "Problem! No second apostrophe found; line=" Params

 Exit

 End

 Params = Delstr(Params,EndPos,1) /* Delete the second one */

 End

 Else do

 EndPos = Index(Params,",")

 If EndPos = 0 then EndPos = Index(Params," ")

 If EndPos = 0 then do

 Say "Problem! Data line is corrupted; line="Params

 Say " Length of Params="length(Params)

 Exit

 End

 End

 ThisVal = substr(Params,1,EndPos-1)

 /* Say "ThisVal="ThisVal */

 Params = DelStr(Params,1,length(ThisVal)+1)

 ValArray.NextEnt = ThisVal

 ValArray.0 = NextEnt

 Params = strip(Params)

Return

/*-----------*/

/* Proc02 - List the arrays */

/*-----------*/

Proc02:

 Say "Symbolic|Value"

 Do I = 1 to SymArray.0

 ThisStr = left(SymArray.I||" ",8)

 ThisStr = ThisStr||" "

 ThisStr = ThisStr||ValArray.I

 Say ThisStr

 End

Return

/*-----------*/

/* Proc03 - Create the change arrays */

/*-----------*/

Proc03:

 ChgArray1.0 = 0 ; ChgArray2.0 = 0;

 Do I = 1 to SymArray.0

 /* Symbolics with the '.' */

 ChgArray1.I = "Change '&&&&"SymArray.I".' '"ValArray.I"' all"

 /* Symbolics without the '.' */

 ChgArray2.I = "Change '&&&&"SymArray.I"' '"ValArray.I"' all word"

 End

 ChgArray1.0 = SymArray.0 ; ChgArray2.0 = SymArray.0

Return

/*-----------*/

/* Proc04 - List the Change Arrays */

/*-----------*/

Page [234]

Proc04:

 Do I = 1 to ChgArray1.0

 Say ChgArray1.I

 End

 Do I = 1 to ChgArray2.0

 Say ChgArray2.I

 End

Return

/*-----------*/

/* Proc05 - Execute the Change Arrays */

/*-----------*/

Proc05:

 Address "ISREDIT"

 Do I = 1 to ChgArray1.0

 ChgArray1.I

 ChgArray2.I

 End

 address "ISREDIT" "LINE_AFTER 0 = NoteLine",

 "'--'"

 address "ISREDIT" "LINE_AFTER 0 = NoteLine",

 "'" Symbolic substitution performed ISPF macro ProcSyms."'"

 address "ISREDIT" "LINE_AFTER 0 = NoteLine",

 "'--'"

 "Up Max"

Return

Page [235]

PTS - PDS-to-Sequential; member name is prefix

 This exec will "flatten out" a PDS, adding the member name to the front of each line. The

result is written to a dataset for subsequent modification.

/* PTS - Copy a PDS to a sequential file, adding the */

/* member name to the first 8 positions */

Arg PDSName

Call Proc01 /* Program Initialization */

Call Proc02 /* List Members to an array */

Call Proc03 /* Create the sequential file array */

Call Proc04 /* Write the array to a dataset */

Call Proc99 /* Finalization */

Exit

/*---*/

/* Called Procedures */

/*---*/

/*------------*/

/* Program Initialization */

/*------------*/

Proc01:

 Say "PTS - Copy PDS to Sequential"

 Say "Proceeding..."

 If PDSName = '' then do

 Say "PDSName not specified"

 Exit(16)

 End

 Prefix = sysvar(SYSPREF)

 If Prefix = "" then

 Prefix = sysvar(SYSUID)

 /* Follow TSO conventions. If the PDSName has quotes remove them.

 If not, add the userid to the front */

 If Left(PDSName,1) = "'" then do

 OurLen = length(PDSName) - 2

 PDSName = substr(PDSName,2,OurLen)

 End

 Else

 PDSName = Prefix||"."||PDSName

 /* Say "The datasetname is " PDSName */

Return

/*------------*/

/* List Members to an array */

/*------------*/

Proc02:

 Say "Listing "PDSName" Members..."

 Dummy = OutTrap("Members.","*")

 "LISTD '"PDSName"' M "

 Dummy = OutTrap("OFF")

 NumMembers = Members.0

 If NumMembers < 2 then do

Page [236]

 Say "No members found: problem?"

 Exit(16)

 End

 AdjMembers = NumMembers - 6 /* Don't count the first six blanks */

 Say AdjMembers PDSName "names were found"

Return

/*------------*/

/* Create the sequential file array */

/*------------*/

Proc03:

 SeqFileNumLines = 0

 Do I = 7 to NumMembers

 Members.I = strip(Members.I)

 OrigMemname = left(Members.I,8)

 Memname = strip(OrigMemName)

 InputDSN = "'"PDSName"("Memname")'"

 /* Say "InputDSN=" InputDSN */

 Address TSO

 "ALLOC DA("InputDSN") F(INDD) SHR REUSE"

 'EXECIO * DISKR INDD (STEM REC. FINIS'

 'FREE F(INDD)'

 ThisMemNumLines = REC.0

 /* Say "Member contains" ThisMemNumLines" lines" */

 Do J = 1 to ThisMemNumLines

 ThisLine = OrigMemName || Rec.J

 SeqFileNumLines = SeqFileNumLines + 1

 SeqArray.SeqFileNumLines = ThisLine

 End

 End

 /* Say 'The sequential file array contains' SeqFileNumLines' lines'*/

Return

/*------------*/

/* Write the array to a dataset */

/*------------*/

Proc04:

 OPDSN = "'"Prefix||"."||PTS.Work"'"

 Dummy = OutTrap("Junk.","*")

 /* Allocate the sequential output file */

 Address TSO

 "Delete " OPDSN

 "Free FI(SeqFil)"

 Dummy = OutTrap("OFF")

 "ALLOC F(SeqFil) DA("OPDSN") NEW UNIT(SYSDA) DSORG(PS)",

 "SPACE(45 45) Tracks LRECL(88) BLKSIZE(6160) RECFM(F,B)"

 /* Now write the array to the sequential output file */

 'EXECIO' SeqFileNumLines 'DISKW SeqFil (STEM SeqArray. FINIS'

 "Free FI(SeqFil)"

Return

/*------------*/

/* Finalization */

/*------------*/

Proc99:

Page [237]

 Say OPDSN "created. PTS complete :)"

Return

Page [238]

PTS2 - PDS-to-Sequential; member name is inserted

 This exec will "flatten out" a PDS, inserting a line with the member name between each

member. The result is written to a dataset for subsequent modification.

/* PTS2 - Copy a PDS to a sequential file, adding the */

/* member name between members */

Arg PDSName

Call Proc01 /* Program Initialization */

Call Proc02 /* List Members to an array */

Call Proc03 /* Create the sequential file array */

Call Proc04 /* Write the array to a dataset */

Call Proc99 /* Finalization */

Exit

/*---*/

/* Called Procedures */

/*---*/

/*------------*/

/* Program Initialization */

/*------------*/

Proc01:

 Say "PTS2 - Copy PDS to Sequential"

 Say "Proceeding..."

 If PDSName = '' then do

 Say "PDSName not specified"

 Exit(16)

 End

 Prefix = sysvar(SYSPREF)

 If Prefix = "" then

 Prefix = sysvar(SYSUID)

 /* Follow TSO conventions. If the PDSName has quotes remove them.

 If not, add the userid to the front */

 If Left(PDSName,1) = "'" then do

 OurLen = length(PDSName) - 2

 PDSName = substr(PDSName,2,OurLen)

 End

 Else

 PDSName = Prefix||"."||PDSName

 /* Say "The datasetname is " PDSName */

Return

/*------------*/

/* List Members to an array */

/*------------*/

Proc02:

 Say "Listing "PDSName" Members..."

 Dummy = OutTrap("Members.","*")

 "LISTD '"PDSName"' M "

 Dummy = OutTrap("OFF")

 NumMembers = Members.0

 If NumMembers < 2 then do

Page [239]

 Say "No members found: problem?"

 Exit(16)

 End

 AdjMembers = NumMembers - 6 /* Don't count the first six blanks */

 Say AdjMembers PDSName "names were found"

Return

/*------------*/

/* Create the sequential file array */

/*------------*/

Proc03:

 SeqFileNumLines = 0

 Do I = 7 to NumMembers

 Members.I = strip(Members.I)

 OrigMemname = left(Members.I,8)

 Memname = strip(OrigMemName)

 InputDSN = "'"PDSName"("Memname")'"

 /* Say "InputDSN=" InputDSN */

 Address TSO

 "ALLOC DA("InputDSN") F(INDD) SHR REUSE"

 'EXECIO * DISKR INDD (STEM REC. FINIS'

 'FREE F(INDD)'

 ThisMemNumLines = REC.0

 /* Say "Member contains" ThisMemNumLines" lines" */

 /* First write a record containing the member name */

 SeqFileNumLines = SeqFileNumLines + 1

 SeqArray.SeqFileNumLines = "== " || OrigMemName || " =="

 Do J = 1 to ThisMemNumLines

 ThisLine = Rec.J

 SeqFileNumLines = SeqFileNumLines + 1

 SeqArray.SeqFileNumLines = ThisLine

 End

 End

 /* Say 'The sequential file array contains' SeqFileNumLines' lines'*/

Return

/*------------*/

/* Write the array to a dataset */

/*------------*/

Proc04:

 OPDSN = "'"Prefix||"."||PTS2.Work"'"

 Dummy = OutTrap("Junk.","*")

 /* Allocate the sequential output file */

 Address TSO

 "Delete " OPDSN

 "Free FI(SeqFil)"

 Dummy = OutTrap("OFF")

 "ALLOC F(SeqFil) DA("OPDSN") NEW UNIT(SYSDA) DSORG(PS)",

 "SPACE(45 45) Tracks LRECL(80) BLKSIZE(6160) RECFM(F,B)"

 /* Now write the array to the sequential output file */

 'EXECIO' SeqFileNumLines 'DISKW SeqFil (STEM SeqArray. FINIS'

 "Free FI(SeqFil)"

Return

Page [240]

/*------------*/

/* Finalization */

/*------------*/

Proc99:

 Say OPDSN "created. PTS2 complete :)"

Return

Page [241]

RexxModl - Rexx Exec Model

 Every toolbox should have a model from which to create a new program, be it bare-

bones, or chock-full of routines to weed through. Here is the former.

/* PgmID - Program Function - Rexx Exec */

/* Written by . . . */

/* This program will... */

Arg Spec

Call Init /* Init Program */

Exit

/*------------*/

/* Program Initialization */

/*------------*/

Init:

Return

Page [242]

Scale - Display a Scale

This is a code snippet that is handy for lining things up, when necessary.

Say ' 1 2 3 4 5 6'

Say '....5....0....5....0....5....0....5....0....5....0....5....0'

Page [243]

ScanLibs – Scan Library Concatenations
/* ScanLibs - Scan a Concat of Libraries for text REXX */

/* Written by David Grund, Feb 21, 2005. */

Arg OurDD OurText

Call Proc01 /* Initialization */

Call Proc02 /* LisaA to an array */

Call Proc03 /* Adjust the array */

Call Proc04 /* Remove 'KEEP' lines */

/* Call Proc05 */ /* Write the array to a dataset and view it */

Call Proc06 /* Isolate the DD */

Call Proc07 /* List all DSN's in the concatenation */

Call Proc08 /* Scan each PDS */

/*------------*/

/* Proc01 - Initialization */

/*------------*/

Proc01:

 If OurDD = "" | OurText = "" then do

 Say "Command syntax: ScanLibs DDName OurText"

 Exit(16)

 End

Return

/*------------*/

/* Proc02 - ListA to an Array */

/*------------*/

Proc02:

 Dummy = OutTrap("output_line.","*")

 "LISTA SY ST"

 NumLines = Output_Line.0

 /* Say Numlines "lines were created */

 Dummy = OutTrap("OFF")

Return

/*------------*/

/* Proc03 - Adjust the Array */

/*------------*/

Proc03:

 /* Move the line with the DDName above the first datasetname that */

 /* it is concatenated to. It is currently below. */

 Do I = 1 to NumLines

 Col1_2 = Substr(Output_Line.I,1,2)

 Col3 = Substr(Output_Line.I,3,1)

 Col12_15 = Substr(Output_Line.I,12,4)

 If Col1_2 = ' ' & Col 3 /= " " & Col12_15 = 'KEEP' then do

 J = I - 1

 SaveLine = Output_Line.I

 Output_Line.I = Output_Line.J

 Output_Line.J = SaveLine

 End

 End

Return

/*------------*/

/* Proc04 - Remove all lines that say only 'KEEP' */

/*------------*/

Page [244]

Proc04:

 J = 0 /* Output array counter */

 Do I = 1 to NumLines

 ThisLine = strip(Output_Line.I)

 If (Left(ThisLine,4) = 'KEEP') | ,

 (Left(ThisLine,8) = 'TERMFILE') then nop=nop

 Else do

 J = J + 1

 NewArray.J = Output_Line.I

 End

 End

 NewArray.0 = J

Return

/*------------*/

/* Proc05 - Write the array to a dataset and view it */

/*------------*/

Proc05:

 "Delete ScanLibs.List Purge"

 "Allocate DD(FMList) DA(ScanLibs.List) new space(1 1) tracks",

 "Lrecl(80) Block(5600) recfm(f b) retpd(1)"

 "ExecIO" NewArray.0 "DiskW FMList (STem NewArray. FINIS"

 "Free DDName(FMList) DA(ScanLibs.List)"

 Address "ISPEXEC" "View Dataset (Scanlibs.List)"

 exit(0)

Return

/*------------*/

/* Proc06 - Isolate the DD */

/*------------*/

Proc06:

 J = 0 /* DSNArray counter */

 DDName = ''

 Do I = 1 to NewArray.0

 If left(NewArray.I,2) = ' ' then

 DDName = left(strip(NewArray.I),8)

 else do

 ThisRec = DDName||strip(NewArray.I)

 J = J + 1

 DSNArray.J = ThisRec

 End

 End

 DSNArray.0 = J

 /* Do I = 1 to DSNArray.0; Say DSNArray.I; End */

Return

/*------------*/

/* Proc07 - List all DSN's in the concatenation */

/*------------*/

Proc07:

 DDFound = 0

 Do I = 1 to DSNArray.0 /* Skip the first six lines */

 If left(DSNArray.I,8) = OurDD then do

 DDFound = DDFound + 1

 DSN = strip(substr(DSNArray.i,9,63))

 /* Say "I found" DSN */

 DSNArray2.DDFound = DSN

Page [245]

 End

 End

 DSNArray2.0 = DDFound

 Say "I found" DDFound "datasets concatenated to "OurDD

Return

/*------------*/

/* Proc08 - Iteratively scan each PDS */

/*------------*/

Proc08:

MemSearched = 0

TextFound = 0

Do I = 1 to DSNArray2.0

 DSN = DSNArray2.I

 Say "Processing DSN="DSN

 /* First let's make sure this dataset is a PDS */

 RC = ListDSI("'"DSN"'" Directory)

 If RC > 0 then do

 Say "Error processing "DSN

 Say SYSMSGLVL1

 Say SYSMSGLVL2; Say

 Return

 End

 If SYSDSORG = "PO" then do

 Dummy = OutTrap("PDSMems.","*") /* List the member names */

 "ListD '"DSN"' M"

 NumLines = PDSMems.0

 Dummy = OutTrap("OFF")

 Do J = 7 to PDSMems.0

 /* Say " Proc08: This PDS member is: "PDSMems.J */

 Call Proc081 /* Scan THIS PDS */

 End

 End

 Else

 Say "Dataset "DSN" is not a PDS."

End

Say "Members searched: "MemSearched

Say "LInes found containing the text: "TextFound

Return

/*------------*/

/* Proc081 - Scan THIS PDS Member */

/*------------*/

Proc081:

 MemSearched = MemSearched + 1

 Member = strip(PDSMems.J)

 If Pos('-',Member) = 0 then do /* Member Names with a '-' in them? */

 OurDS = DSN"("Member")"

 If Pos('ALIAS',OurDS) = 0 then do /* Bypass aliases */

 /* Say " Proc081: Processing "OurDS */

 "Allocate DD(ThisMem) DA('"OurDS"') shr"

 If RC > 0 then exit

 "ExecIO * DiskR ThisMem (Stem DS1Lines. Finis "

 "Free DDName(ThisMem)"

 Do K = 1 to DS1Lines.0

 If Pos(OurText,DS1Lines.K) > 0 then do

Page [246]

 Say "I found "OurText" in "OurDS

 Say DS1Lines.K

 TextFound = TextFound + 1

 End

 End

 End

 End

Return

Page [247]

SDN - Sorted Directory w/Notes (Directory Annotator)

 This is a handy ISPF macro that I wrote to keep track of what I have in my PDS's. This

command will create and maintain a member called "@LIST", which contains a one-liner about

each member in the PDS. Hopefully, this member will always be the first in a PDS.

 Unfortunately, this command can be invoked only while you are editing a member of the

PDS that you wish to annotate.

/* SDN - REXX EXEC */

/* Sorted Directory w/Notes - Edit Macro */

/* Written by David Grund */

/* Changed 7/27/95- restore the TSO Profile prefix before ISPF */

/* edit is invoked, instead of after the command is complete */

ADDRESS "ISREDIT" "MACRO PROCESS"

/*---*/

/* Initialization */

/*---*/

/* It's almost impossible to effectively handle datasetnames while */

/* the TSO Profile Prefix is set to on. */

PREFIX = SYSVAR(SYSPREF) /* Get the Prefix */

If PREFIX = "" then DO /* prefix is not set */

 PrefixOn = 0 /* Set a switch for later */

end

else Do

 PrefixOn = 1 /* Set a switch for later */

 ADDRESS TSO

 "Profile NoPrefix" /* Turn the prefix off */

end

/*---*/

/* 1) Read @LIST from current pds */

/*---*/

Address "ISREDIT" "(XDSN)=DATASET"

Dummy = ListDsi(XDSN)

If SYSDSORG ¬= "PO" then do

 Say "This dataset is not a PDS. No action performed."

 Exit

end

IPDSN = "'"XDSN"(@LIST)'"

If SYSdsn(IPDSN) = "OK" then

 nop = nop

 /* Say "The dsn is "IPDSN */

else do /* Create @List with one member */

 "NewStack"

 "Allocate DD(FileA) DA("IPDSN") shr"

 ARec = "@LIST This member"

 Push ARec

 "ExecIO 1 DiskW FileA "

 "ExecIO 0 DiskW FileA (Finis" /* Close the output file */

 "Free DDNAME(FileA)"

end

Page [248]

/* "Free FI(OldFile)" */

"Allocate FI(OldFile) DA("IPDSN") shr"

"ExecIO * DiskR OldFile (STEM FileARec. FINIS"

"Free FI(OldFile)"

/* Say FileARec.0 "Records read into the FileARec array" */

/*---*/

/* 2) Get member list of current PDS */

/*---*/

Dummy = OutTrap("FileBRec.","*")

"LISTD " IPDSN " M"

Dummy = OutTrap("OFF")

/* Say FileBRec.0 "Records read into the FileBRec array" */

/* ListD has a problem when run from within a REXX EXEC. */

/* It spits out two or three lines that it doesn't write when */

/* running from outside of an EXEC. These lines start with the */

/* string "--MEMBER--". Find out where our list really starts, */

/* and save that record number for use later. */

FileBPos = 0 /* Initialize this value */

Do I = 1 to 15

 If SubStr(FileBRec.I,1,11) = "--MEMBERS--" then do

 FileBPos = I + 1

 Signal Done2

 end

 /* Say I FileBRec.I */

end

Done2: Nop=nop

If FileBPos = 0 then do

 Say "Problem with SDN EXEC at POINT 1"

 Exit(0)

end

/*---*/

/* 3) Compare, and create the new @List */

/*---*/

OPDSN = "'"XDSN"(@LIST)'"

"NewStack"

"Allocate DD(FileC) DA("OPDSN") shr"

FileAPos = 1

/* FileBPos is set in section 2 above */

FileCPos = 1

GetBoth:

/* Get a record from File A */

If FileAPos > FileARec.0 then

 FileAKey = '99999999'

Else Do

 FileAKey = SubStr(FileARec.FileAPos,1,8)

 ARec = SubStr(FileARec.FileAPos,1,72)

 FileAPos = FileAPos + 1

end

/* Say "The first record from FileA is: " ARec */

/* Get a record from File B */

If FileBPos > FileBRec.0 then

Page [249]

 FileBKey = '99999999'

Else Do

 FileBKey = SubStr(FileBRec.FileBPos,3,10)

 BRec = SubStr(FileBRec.FileBPos,3,72)

 FileBPos = FileBPos + 1

END

/* Say "The first record from FileB is: " BRec */

Compare:

If FileAKey < FileBKey then signal ALow

If FileBKey < FileAKey then signal BLow

/* Say "The record being compared is " FileAKey FileBKey */

/* Member names are the same */

If FileAKey = "99999999" then /* Both files are at end-of-file */

 signal EOF

CRec = SubStr(ARec,1,9)" "Substr(ARec,11,70)

/* Say "The record going out is " Crec */

Push CRec

"ExecIO 1 DiskW FileC "

Signal GetBoth

ALow:

CRec = SubStr(ARec,1,9)"-"Substr(ARec,11,70)

Push CRec

"ExecIO 1 DiskW FileC "

/* Get a record from File A */

If FileAPos > FileARec.0 then

 FileAKey = '99999999'

Else Do

 FileAKey = SubStr(FileARec.FileAPos,1,8)

 ARec = SubStr(FileARec.FileAPos,1,72)

 FileAPos = FileAPos + 1

end

Signal Compare

BLow:

CRec = SubStr(BRec,1,9)"+"Substr(BRec,11,70)

Push CRec

"ExecIO 1 DiskW FileC "

/* Get a record from File B */

If FileBPos > FileBRec.0 then

 FileBKey = '99999999'

Else Do

 FileBKey = SubStr(FileBRec.FileBPos,3,10)

 BRec = SubStr(FileBRec.FileBPos,3,72)

 FileBPos = FileBPos + 1

END

Signal Compare

EOF:

"ExecIO 0 DiskW FileC (Finis" /* Close the output file */

"Free DDNAME(FileC)"

/* If the TSO Profile Prefix was set to on when we came in, restore */

/* it. */

If PrefixOn = 1 then do /* We came in with the setting */

Page [250]

 ADDRESS TSO

 "Profile Prefix("PREFIX")" /* Restore it */

end

ADDRESS "ISPEXEC" "EDIT Dataset("OPDSN") "

Page [251]

SHOWDUPS - Show Duplicates

This exec is an ISPF macro that will show all duplicated lines in a dataset.

/* ShowDups - Show Duplicate Lines - REXX Exec */

ADDRESS ISREDIT

'MACRO (begcol endcol)'

If Begcol = '?' then do

 zedsmsg = 'ShowDup begcol,endcol'

 zedlmsg = 'Command syntax: ShowDup beginning col, ending

col'

 signal quitme

end

numcheck = DATATYPE(begcol,N) /* Determine if any parms

have */

If NumCheck /= 1 then BegCol = 1 /* been passed.

*/

numcheck = DATATYPE(endcol,N)

If NumCheck /= 1 then 'ISREDIT (endcol) = LRECL'

'ISREDIT (currline) = LINENUM .ZFIRST' /* save starting record

*/

'ISREDIT (lastline) = LINENUM .ZLAST' /* save ending record #

*/

'ISREDIT (cl,cc) = CURSOR' /* save cursor position

*/

DupCnt = 0

'ISREDIT EXCLUDE ALL'

Do currline = 1 to lastline - 1

 'ISREDIT (line1) = LINE' currline

 line1 = substr(line1,begcol,(endcol - begcol) + 1)

 nextline = currline + 1

 'ISREDIT (line2) = LINE' nextline /* get next record */

 line2 = substr(line2,begcol,(endcol - begcol) + 1)

 If line1 == line2 then do

 DupCnt = DupCnt + 1

 "ISREDIT LABEL " currline " = .A"

 "ISREDIT LABEL " nextline " = .B"

 "ISREDIT RESET EXCLUDED .A .B"

 end

end

zedsmsg = DupCnt 'DUPS FOUND'

zedlmsg = DupCnt 'duplicate lines were detected'

Quitme:

ADDRESS ISPEXEC

'SETMSG MSG(ISRZ000)'

EXIT 0

Page [252]

Stack - Start another ISPF session

 This is a handy Rexx exec that, while you are in an ISPF session, will start another one.

The action is totally recursive.

/* Stack - Start Another ISPF Session - Rexx Exec */

/* This program will start another ISPF session so you don't

have to back out of everything you have when you want another

window. */

Address ISPExec

"Select Panel(ISR@Prim)"

Page [253]

TimeFmts - Show all time formats

/* TimeFmts - Time Formats - Rexx EXEC */

/* Written by David Grund */

 Say "Date()" Date()

 Say "Date(B)" Date(B)

 Say "Date(C)" Date(C)

 Say "Date(D)" Date(D)

 Say "Date(E)" Date(E)

 Say "Date(J)" Date(J)

 Say "Date(M)" Date(M)

 Say "Date(O)" Date(O)

 Say "Date(S)" Date(S)

 Say "Date(U)" Date(U)

 Say "Date(W)" Date(W)

 Say "Time()" Time()

 Say "Time(C)" Time(C)

 Say "Time(H)" Time(H)

 Say "Time(L)" Time(L)

 Say "Time(M)" Time(M)

 Say "Time(N)" Time(N)

 Say "Time(R)" Time(R)

 Say "Time(S)" Time(S)

Page [254]

TimeToGo - Display time until an event

 This exec can be used to display how much time remains until a certin event. This can be

pretty informative and useful on a Friday afternoon at about 2:00.

/* TimeToGo - Rexx EXEC */

/* Written by David Grund */

/* This is a Rexx learning exercise. Its purpose is to */

/* calculate how much time remains to a specific event */

TargetHH = 16 /* Set these to the */

TargetMM = 00 /* event */

TargetSS = 00 /* time */

TargetSeconds = (TargetHH * 60 * 60) + (TargetMM * 60) +

TargetSS

TimeNow = Time(N)

TimeNowHH = left(TimeNow,2)

TimeNowMM = substr(TimeNow,4,2)

TimeNowSS = right(TimeNow,2)

SecondsNow = (TimeNowHH * 60 * 60) + (TimeNowMM * 60) +

TimeNowSS

SecondsLeft = TargetSeconds - SecondsNow

/* Say "SecondsLeft = " SecondsLeft */

TimeToGoHH = trunc(SecondsLeft / 3600)

SecondsLeft = SecondsLeft - (TimeToGoHH * 3600)

TimeToGoMM = trunc(SecondsLeft / 60)

SecondsLeft = SecondsLeft - (TimeToGoMM * 60)

TimeToGoSS = SecondsLeft

/* Now format the time so we don't get something like 7:7:4 */

If TimeToGoSS < 10 then

 TimeToGoSS = '0' || TimeToGoSS

If TimeToGoMM < 10 then

 TimeToGoMM = '0' || TimeToGoMM

If TimeToGoHH > 0 then

 Say "Time to Go: "TimeToGoHH":"TimeToGoMM":"TimeToGoSS

Else

 Say "Time to Go: "TimeToGoMM":"TimeToGoSS

Page [255]

Section IV - The Rexx Environment

Page [256]

This section of the manual describes the following Rexx features:

1. Establishing your Rexx environment

2. Using Rexx with ISPF

3. Using Rexx in the background (batch jobs)

4. Debugging your Rexx program

5. Trapping Errors

6. Examples

Page [257]

Establishing Your Rexx Environment

Establishing your Rexx environment is simply a matter of allowing the system to quickly

and easily find your commands, so you don’t have to type in lengthy strings to execute your

commands. Like so many things, there are several ways to do this.

Regardless of the method you choose, you need to pick an existing library, or create a new one.

To create a new Rexx exec library (a library from which all of your execs will be called), either

use ISPF 3.2, then option M, or you can do this from TSO by issuing the following commands:
Address TSO

"Free Fi(NEWDA)"

"delete REXX.EXEC"

"Alloc Fi(NEWDA) DA(REXX.EXEC) new space(15 1) dir(45) track" ,

 "DSNType(Library)" ,

 "dsorg(PO) recfm(V B) lrecl(255) blksize(0)"

"Free Fi(NEWDA)"

Now, you have to point the system to your Rexx exec library. There are five options that

I can think of. I will discuss the simplest first, to the most involved.

1. Simply allocate DDName SYSEXEC to your library:
"Free Fi(SYSEXEC)"

"Alloc Fi(SYSEXEC) DA(REXX.EXEC) SHR”

The problem with this is that this unallocates ALL other concatenated libraries that

SYSEXEC was pointing to. For short-term or emergency purposes, this will work. But it

could be that the successful processing in your system will depend on those libraries being

available.

2. You could research to see what was currently allocated to SYSEXEC (LISTA SY ST). Then,

after freeing DDName SYSEXEC, you would allocate your exec library to SYSEXEC, and

then reallocate all of the system libraries that were previously allocated to it. The problem

with this was that if the system administrators responsible for the concatenation of your

procedure libraries changed the list of files allocated to SYSEXEC, you would not have that

updated list available to you.

3. Some shops write their logon procedures so you could pass it the name of a library that you

wanted to allocate in front of (or in back of) the list of system exec or clist libraries. There

was a lot of room for error in this method. If that is not available to you, proceed to the next

item.

4. Whenever you log on to TSO, allocate DDName SYSUEXEC to your Rexx Exec library:
"Alloc Fi(SYSUEXEC) DA(REXX.EXEC) SHR".

Then issue the ALTLIB command.
"ALTLIB Activate User(exec)"

There is on big problem with this method: you must issue the ACTIVATE portion wherever

you will be working.

If you issue the Activate within TSO, and before you start ISPF, then your ISPF session will

not see that allocation, and your commands will not be available. If you enter ISPF, and then

split screens, the commands are not available to you on that side until you issue the Activate

on that side. I don’t know if this is a design feature or a bug, but it is definitely problematic.

Page [258]

5. Concatenate your Rexx Exec library to the top of the current SYSEXEC list, regardless of

what is currently allocated to it. This differs from #2 above in that you don’t have to

explicitly supply the names of the libraries. This option requires the use of a tool that will do

this dynamically. I have created that tool, and it is called ConcatL. Check this manual for the

source.

Page [259]

Using Rexx with ISPF

 You can invoke the ISPF editor or browser from within a Rexx exec. Furthermore, you

can run a Rexx exec upon beginning the edit of a dataset. This feature is called an ISPF edit

macro.

ISPF Browser
To browse a dataset from within a Rexx exec:
 ADDRESS "ISPEXEC" "BROWSE Dataset(dsn)"

 where

 dsn is the datasetname of the file you wish to browse

ISPF Editor
To edit a dataset from within a Rexx exec:
 ADDRESS "ISPEXEC" "EDIT Dataset(dsn) Macro(macname)"

 where

 dsn is the datasetname of the file you wish to edit

 macname is the name of the ISPF Rexx exec that will function as the ISPF macro.

ISPF Edit Macros
 The purpose of an ISPF edit macro is to perform one or more ISPF edit commands on a

dataset immediately after opening it for edit. If you need to do something to a dataset after it is

opened for edit, an edit macro may be the way to accomplish this.

 A complete dissertation of ISPF edit macros is beyond the scope of this book, but I

provide enough to at least let you know how they are used in conjunction with Rexx.

 An ISPF edit macro can be used to reformat or restructure data in a dataset prior to the

dataset being presented to the user for editing.

 The first line in an ISPF macro is one to tell the Rexx exec that it is to function as an

ISPF macro:

 Address "ISREDIT" "Macro Process".

 Just about any ISPF editor primary command can be used in an ISPF macro. Simply

precede the command with Address "ISREDIT".

 This is an example of an ISPF macro that is used to edit the output of the TSO command

LISTA SY ST (see the "LA" exec in the examples):
/* REXX - LAE - Edit macro for LA - Rexx Exec */

/* Written by David Grund, April 7, 1995 */

1 ADDRESS "ISREDIT" "MACRO PROCESS"

2 ADDRESS "ISREDIT" "EXCLUDE ALL --DDNAME 1"

Page [260]

3 ADDRESS "ISREDIT" "EXCLUDE ALL ' keep' 1 "

4 ADDRESS "ISREDIT" "Delete ALL X"

5 ADDRESS "ISREDIT" "C 'KEEP' '--------------' word all 12"

Line 1 tells the Exec that it is an ISPF macro.

Line 2 is an ISPF command that excludes all lines where "--DDNAME" appears in column 1.

Line 3 is an ISPF command that does the same thing with a different character string.

Line 4 tells ISPF to delete all excluded lines (those that were excluded by the previous two lines)

Line 5 tells ISPF to change the all occurrences of the string "KEEP" that start in column 12 to 14

dashes.

Page [261]

Using Rexx in the background (batch jobs)

 As long as your Rexx exec is not interactive, you should have no problem running it in

the background, that is, via a job you submit from your terminal.

 A good candidate for a Rexx exec that should run in the background is one that will take

a lot of CPU time, or produce a lot of output. By running it in the background, you can free up

your terminal to do other things.

 Instead of allocating files from within your Rexx exec, you would allocate them via the

JCL. You could keep the allocations buried within your Rexx exec, but then you will be hiding

the datasetname from your user. Unless this is what you specifically want to do, put the DD

statement for that file in the JCL, and remove the allocate step from your Rexx exec.

An example of JCL for running a Rexx exec in the background is shown:
1 //STEP010 EXEC PGM=IKJEFT01

2 //SYSTSPRT DD SYSOUT=*

3 //SYSTSIN DD *

4 EXEC 'GRUNDDAV.REXX.EXEC(TEST1)'

5 /*

Note that this JCL can be used for executing any TSO command, not just Rexx execs.

Line 1 executes program IKJEFT01, which is the background TSO command processor.

Line 2 allocates the TSO SYSOUT dataset.

Line 3 allocates the TSO SYSIN dataset

Line 4 executes the TSO command. In this case, it's an exec from my exec PDS.

(Line 5 is simply the JES end-of-data statement.)

Page [262]

Debugging your Rexx program

 If your program operates in a manner that doesn't seem quite right, and the cause is not

immediately evident, it is probably time to go into debugging mode. Debugging is the process of

putting code into your program to make your program tell you where it is, what it is about to do,

or what it has done.

 Typically, you would not leave any "active" debugging code in your production program.

Instead of deleting it, you could comment it out, but if there is too much, it could detract from the

readability of the program.

 There are several ways to debug a Rexx exec.

 One way is to put "Say" statements in strategic locations. This will tell you what paths

the program is taking. Along this same line is commenting out instructions that you suspect to be

causing the problems.

 Another way is to use the Rexx Trace facilities.

 I have always used the first method, because it is simpler, easier to "unplug", and gave

me the same end result. The second method can hammer you with output that can serve more to

confuse you than to help you. And to top it off, I think the Rexx Trace facilities are a little

complicated. But it still warrants a short discussion, so here it is.

 To interrupt your Rexx program from running, press the ATTN, or PA1 key. The

program will break out of its current processing, and if there is code left to execute, the following

will be displayed:
ENTER HI TO END, A NULL LINE TO CONTINUE, OR AN IMMEDIATE COMMAND+ -

You have several options for a response:

1) Enter key- The program will continue running

2) HI (Halt Interpret)- The program will end.

3) HT (Halt Typing)- The program will stop displaying output.

4) RT (Resume Typing)- The program will resume displaying output

5) TS (Trace Start)- Rexx will enter Interactive Trace Mode

6) TE (Trace End)- Rexx will exit Interactive Trace Mode

Interactive Trace Mode

 Interactive Trace Mode is where Rexx will display each of the lines as it executes them,

prefixed by the line numbers. When it pauses for input, you can change the value of a variable,

or hit Enter to continue processing.

Page [263]

Trapping Errors

 Trapping Errors is the process of detecting certain program conditions, and then acting

based on those conditions.

 This facility may be used in debugging, but can also be used in a production program (but

carefully).

 Error-trapping instructions:

 Signal On condition

 Signal Off condition

 Call On condition Name subroutinename

Signal On condition
 This instruction will effect a transfer of control to a designated location in the program

whenever a certain condition is detected by the program. After the condition is handled, the

program terminates.

Signal Off condition
 This instruction will cancel the effects of a Signal On for this particular condition only.

Call On condition Name subroutinename
 This instruction will cause the program to perform a call to subroutine every time the

program detects a certain condition. After the condition is handled, the subroutine returns control

to the next sequential instruction iun the program. The subroutine cannot return any values.

 Naming a subroutine is optional.

Condition
 The condition cited in the above instructions can be one of the following:

1. Syntax- Rexx encountered a syntax error in an instruction.

2. Error - A TSO or ISPF command returned a non-zero return code

3. Failure- A command that was passed to the environment has failed

4. NoValue- A variable was never given a value. Typically, this is not an error, because Rexx, by

default, treats an unassigned variable as a literal.

5. Halt- The PA1/Attn key was hit.

Page [264]

Examples
The following Rexx exec will be used in each of the examples. For each example, the "Main

processing" section of the program will be different.

/* Rexx program to demonstrate error-trapping */

Signal On Syntax

Call On Error Name Error_Handler

Call On Failure

Signal On NoValue

Signal On Halt

(Main processing section)

Exit

Syntax:

 Say "I am in the Syntax condition-handling routine now."

 Say "I am going to terminate the program because of this"

Exit

Error_Handler:

 Say "I am in the Error condition-handling routine now."

 Say "I am going to continue processing"

Return

Failure:

 Say "I am in the Failure condition-handling routine now."

 Say "I am going to continue processing"

Return

NoValue:

 Say "I am in the NoValue condition-handling routine now."

 Say "I am going to terminate the program because of this"

 Exit

 Halt:

 Say "I am in the Halt condition-handling routine now."

 Say "I think you hit the attention key!"

 Say "I am going to terminate the program because of this"

 Exit

The following illustrates the output from running the above Rexx exec, causing different

conditions to occur. We do this by replacing the "main processing section" above with each of

the examples.

Page [265]

Example 1

Main processing section:
Say "1) This statement is perfect, and will generate no errors."

Say "2) The next statement will generate a Syntax condition"

PI = 3.1416

Circumference = PI *

Displays:
1) This statement is perfect, and will generate no errors.

2) The next statement will generate a Syntax condition

I am in the Syntax condition-handling routine now.

I am going to terminate the program because of this

Example 2

Main processing section:
Say "3) The next statement will generate a Error condition"

"Delete junk.data.set"

Displays:
3) The next statement will generate a Error condition

ERROR QUALIFYING XCON620.JUNK.DATA.SET

** DEFAULT SERVICE ROUTINE ERROR CODE 20, LOCATE ERROR CODE 8

LASTCC=8

I am in the Error condition-handling routine now.

I am going to continue processing

(The dataset did not exist)

Example 3

Main processing section:
Say "4) The next statement will generate a Failure condition"

"This is not a good command"

Displays:
4) The next statement will generate a Failure condition

COMMAND THIS NOT FOUND

 10 *-* "This is not a good command"

 +++ RC(-3) +++

I am in the Failure condition-handling routine now.

I am going to continue processing

Page [266]

Example 4

Main processing section:
Say "5) The next statement will generate a NoValue condition"

Say "My age is " MyAge

Displays:
5) The next statement will generate a NoValue condition

I am in the NoValue condition-handling routine now.
I am going to terminate the program because of this

Page [267]

Appendix

Rexx instructions

Address

Arg

Call

Do

Drop

Exit

If

Interpret

Iterate

Leave

Nop

Numeric

Options

Parse

Procedure

Pull

Push

Queue

Return

Say

Select

Signal

Trace

Upper

Rexx functions
Abbrev

Abs

Address

Arg

Bitand

Bitor

Bitxor

B2X

Center

Centre

Compare

Condition

Copies

C2D

C2X

Datatype

Date

DBCS

Delstr

Delword

Digits

D2C

D2X

ErrorText

Externals

Find

Form

Format

Fuzz

Index

Insert

Justify

LastPos

Left

Length

Linesize

Max

Min

Overlay

Pos

Queued

Random

Reverse

Right

Sign

Sourceline

Space

Strip

Substr

Subword

Symbol

Time

Trace

Translate

Trunc

Userid

Value

Verify

Word

WordIndex

WordLength

WordPos

Words

XRange

X2C

X2D

TSO External functions
ListDSI

Msg

OutTrap

Prompt

Storage

SYSDSN

SysVar

TSO Commands
DelStack

DropBuf

ExecIO

ExecUtil

HI

HT

MakeBuf

NewStack

QBuf

QElem

QStack

RT

SubCom

TE

TS

Page [268]

Other Rexx References
The MVS QuickRef documentation (on TSO) also contains extensive technical

documentation on Rexx (available only in some shops). This feature is commonly

available via the “QW” command.

Book Manager is available in many shops:

Bookshelf: IKJ2BI01 - TSO/E V2R4 REXX/MVS Reference

 Book name: IKJ2A303 TSO/E V2R4 REXX/MVS Reference

Book name: IKJ2C305 TSO/E V2R4 REXX/MVS User's Guide

Page [269]

The End

