RexX
Reference
Manual
(TSO)

by David Grund

Rev 10 — May 13, 2012
Rev 9 — July 20, 2011
Rev 8 — June 18, 2011
Rev 7 — April 13, 2011

Page [2]

Table of Contents

TABLE OF CONTENTS L.ttt ettt sttt sbra e e 3
REXX REFERENCE MANUAL (TSO) ittt sttt 8
SECTION | - REFERENCE ..ottt 10
L] =N Y I I = 10
F AN =] 2] 2 Y O ROPPRRRROOPPR 11
N = TR 12
AADDRESSttiiieiittiee e e ettt e ettt e e e st e e e b — e e e i b —— e e e e b —— e e e ahbae e e e i b rreeeaahbreeeaabbreeesibaaeeeans 13
AP OSTROPHES ...11ututututststssstssssssssssssssssssssssssssasssnsnnen 15
AARG ...ttt e — e e e b — e e e e — e e e e ah—ae e e e i b raeeeaabbeeeaabbreeesabareeeans 15
ASSIGNMENT STATEMENT ..oitietttteiiie e e e s sestbrerersseessssssbtbbeeessaesssssbsbasereseessssasbsresesssessssins 16
N N 0 TSP 17
2 1 18
T, O TSRS 19
225, GO 21
[R OPRR 22
L I | N 24
CENTER/CENTREutti ittt ittt e ettt e sttt e e st te e st ee e st ee s s abe s s sabe e e sab e e s sbbe s e sbbessbbeesabeeesabesesrbaeessreas 25
L T 1S 26
(10 Y17 PR OTRR 27
L0701V 11 1= T 28
(070 Y127 =] =PRSS 29
COMPARISON OPERATORS ..eeeiiieiiiiiitttteieseesssssstsbesesesessssssbsbassssssssssssssssesssesesssssssresessss 30
(070] (07N 1 =1 N7 1 o] N TS 31
(O70] Y] 0 1 1 [N 32
(070 N 11167 1 (o] S 33
LOT0] =11 34
(374 1 LSRR 35
(372 GO 36
DN N 17 22 = OO 37
1Dy =S 38
D] I X! PR 39
D] I = 40
(D= A 0] o RO 41
D]t TSR 42
3 1o T 43
D] 10] = R 46
D 47
322 R 48
N o TR 49
0= (0] 23 I =5 TR 50
) d =l od [OO 51
I IR 55

e = ISP 57
1] R 58
FORM .ottt e e e e e e e et e e e e e e e e e e e e e e e e e ar e e e aaaaraeas 59
O] 1Ny LR 60
U 7SO 61
L o 62
[O70] V110 1] N o O OUPRRROPPRR 64
IF-THEN=DO ... 65
[N 0= O OUPRRORRRR 66
1] = = 67
LN =TT = = S OUPRRRORRRR 68
I E R AT E i 69
LU 1S3 1 1= 2R ORI 70
I =] = T 71
I 1 20 LSOO 72
Y 73
0= N Y OO 73
=] 74
=N = IO 75
[T =] 4 =S 76
SR 1 1S IO RORRRR 77
I 81
LOGICAL OPERATORS ... uttiiiiiittiieeiittteeesiitbeeeessbteesssasbsaessssbessessbsessssassssssssssbesessssrsseessns 82
1Y 1 TR 83
LT] =PSRRI 83
1Y TR 84
11N OO 84
1Y S C TR 85
NS Y X! PR 86
I L R 87
LY 1= = OO 88

INUMEIIC DIGITS ...ttt bbbt 88

N LU T TR o] 11 TR 89

NN LU g L= o U7 90
(@27 L] L TR 92
(O T 1= = 93
(O 1Y = =T IO 94
P AR L. 95
P OIS e e e e e s i — e e e e e e e s aarareeaaares 100
PROCEDURE ... oot 101
(0] /1= P 104
PULL e 106
U] P 107
(@0 7Y o1 <GPSO 108
QUEUE ...ttt e e e e e et e e e e et e e e e s ba e e e e e eabe e e e e asteeeeesaaneeeeeenateeeeesnrenaeeans 109

QUOTATION MARKS/APOSTROPHES.......cvteiteiirieirieiteesteesseesseesseesseesseessesssesssssssessns 111
YN 5T Y R 112
O PP OORPPPPRRRR 113
=] | R 114
RETURN Lottt ettt e e s s st e e e e e e st s s bbb et e e e e et s saab b b babeeeeeessesabbbbreeeeeeessias 115
Y41] =R 116
[T PO OOPPPPPRRR 117
YN 2T 118
] = (o LSOO 119
= 1 O] I | N T 120
] [OO PPSRRRPPO 122
] 11 T 123
] 11\ PR 124
] 1] O 125
SOURGCELINE ..ttt et e e e e e s s s e bbb e r e e e e e e e s s saaaberes 126
TN o = 127
N 17N o1 PP 128
R I = 130
10 =] O] PP 131
10 I 1 S 132
SUBWORD ...ttt e e e e e e e e st s s bbb b b e e e e e e e s st e bbb e b e e e e e e e s s saaareres 133
R 1Y, 1= T 134
S SDISN L e e e a e 135
R 1Y 136
B PP 137
L2 =S 139
B IR Y N NS N 1 =P 140
L2 L0 L 142
=TT OO PRRR 143
LS | SRR 144
R I PP 145
R 2] = 8= 146
VARIABLES, COMPOUNDutttiiiiieeiiiiitbteeeetee e et s sistbbesesssessssssbbbssesssesssssssbaresesessssssssssnes 147
Y4 =12 = 148
LTAT 0] o TP 149
VVORDINDEX ...uvuvuuuvuturusussssrssnses 150
VAV 0] 5] = N[1 P 151
AVT L] 101 =10 1S TR 152
LTA 0] 5 T 153
KRANGE ... 154
D T 155
D1 I 156
INSTRUCTIONS NOT COVEREDcoiiitttiieiiie e s seittbtriee s e e e s sibbbbee s s s e e s s s s sabbbases s s e e e s s snassares 157
SECTION Il -ASTARTER REXX TUTORIAL......o oo 158
SECTION HI - REXX EXAMPLES. ...t 160

ALLOCEIO - ALLOCATE O/P DATASET; WRITE ARRAY TO IT .uuuueeeeeeeeeeeeeeenns 162

CAPTSO - CAPTURE TSO COMMAND OUTPUT 11eeeiiirieeeieirieeesirreeessenseeeessnssesssssreseessns 163
CHGBLKC - INSERT A COBOL CHANGE BLOCK vvviiiiieiiiiiiitiieieiee e e s sesisvsees s e e e sasvenes 164
CHGDATA - MODIFY ADATA FILE ..eiiiiittiteeiittee e e sitree e seitbeeeesstaaeesssssasessssbassessnbaseesans 165
CHGSTEP - CHANGE STEPS INJCL...uuttiiiiiiii ittt sanraaes 168
COFFEE — THE COFFEE GAMEcutiiii ittt ettt ettt eetbae e s eabaa e e s siatae s s s sabaaeessabaneeeans 169
COMPCO - COMPARE TWO FILES OF ORDER NUMBERStvviiiieieiiiiiiiiriee e e e ssnens 171
COMPARE - COMPARE TWO SEQUENTIAL DATASETS ...cciutvieeiiirieeeiiirreeessisreeeessreneeesns 174
COMPDSE — COMPARE TWO SEQUENTIAL DATASETS - ENHANCEDcccvvveeeiiieennnn. 175
COMPPDS - COMPARE TWO PDS'S ...ttt ettt ettt aban e e 177
CONCATL - CONCATENATE LIBRARIES ...ciiiiiii ittt e sibbtree e s e s s e s s saabbaaes s s e e s s snnrnnes 181
CPDSIX — COMPARE TWO PDS INDEXES......ccuvtiiiiiiieeeieittiee s iitreee e seraeeessisbaseessbaneeeans 183
DD - ADD A DD STATEMENT .uuttttiiiieeii s ieitttetis e e e e s sib bt e s s s e s s s s ssabbbresesesessssssbsbaresseessssias 186
DELDUPS - DELETE DUPLICATE RECORDScccitviiieiiiiieesiitrree e s siireee e s sivaeeeessnreseesenns 188
DURATION - TIME AN EXEC ...ttt 189
FINDMEM - FIND A MEMBER IN A CONCATENATION......uvtiiiiiiieeeeiiireeeessirneeeesenreeeesennns 190
[) O O I o) (0] =X 0 N =T IR 193
FX - FILE NAME CROSS-REFERENCEvvviiiiitiiieeiiittieeesirseeesssssesessssresessssssssssssssesessinnes 209
GUESS — GUESS THE NUMBER.........oiicttttieiiiee e s seittteees e e s s s s sbbbaaes s s s s s s s sssssbbaaessseessssasrenes 215
HD = HEX DUMP ...ttt ettt ettt st aa e e s sbaa e e e s nabbae e e e ares 217
INIT - ESTABLISH MY TSO ENVIRONMENT ...cottitttteiiiiee e e s s sivrrreeee e s e s s s e ssasbesessseessssnnssnnes 220
INITSPF - ESTABLISH MY ISPF ENVIRONMENTccitttiiei ittt e ctree e sette e e eiree e s svane e 221
JOBCARD - CREATE A JOBCARDocttttieiiieeesssiittteees e e e s s sssbbbeeesssesssssssbssesssesssssnssrenes 222
LA - LIST TSO ALLOCATIONSvtiiiittiieeiiittieessittteeeseitbeeesssbaeeesssssasssssssbaseessssasessassseeas 223
LAE - ISPF EDITMACRO FOR LA ..ottt ettt baee e 224
LOTTERY - PICK LOTTERY NUMBERS ...tttviiiiiiiiiiiiitiieiie e seiibbsresese e e s s sssssbesesssessnains 225
LISTDSI - LIST DATASET INFORMATION ...vvviiiiieeiiiitirieieeeeeessesssrssesseesssssssssssesesssesssssns 227
LPDSIX - LISTAPDS INDEX TO A SEQUENTIAL FILE ..cooviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 228
PRIME — CALCULATE PRIME NUMBERS.......ccccttttiiiiee s setrteeee e e e e s s sssbaaee s s e e e s sesbrraeese s 230
PROCSYMS - PERFORM SYMBOLIC SUBSTITUTION ...cccuvtiiiiieeeeeiiiiiiineeeeeeesssennsrneeneeas 231
PTS - PDS-TO-SEQUENTIAL; MEMBER NAME IS PREFIX ..uvvvviiiieeeiiiiirrieeieeeeesssesssveeeneens 235
PTS2 - PDS-TO-SEQUENTIAL; MEMBER NAME IS INSERTEDcoeoviiiiiiieeeeeeeeeeeeeeeeeeeee 238
REXXMODL - REXX EXEC IMODELuuuuuvvvuiuiuiirurssnrsssrsrsssnes 241
SCALE = DISPLAY A SCALE .uvtiiiiiiii ittt ettt e s st s e e s s s e bbb ra e e e s e e s e s saaberes 242
SCANLIBS — SCAN LIBRARY CONCATENATIONS ..vvveiiiieeiiiiiirriieeeeeesssssssssrseeessessssssssssnes 243
SDN - SORTED DIRECTORY W/NOTES (DIRECTORY ANNOTATOR) ...covverviirieieeresiieinins 247
SHOWDUPS - SHOW DUPLICATES ...uvttiiiiiee e e seittieeee e e e e s siisbtreee s e s s s s s s ssssbssesssesssssnsssnes 251
STACK - START ANOTHER ISPF SESSIONcciiiiiitiiiiiiece ettt 252
TIMEFMTS - SHOW ALL TIME FORMATS ..vvtttiieeiiiiitttretireeesssssssreeesssesssssssssssesssesssssnssssnes 253
TIMETOGO - DISPLAY TIME UNTIL AN EVENT oiiitttieiiie e siitireiee e e e e s sisbaree e s e e s sanranes 254
SECTION IV - THE REXX ENVIRONMENToooiiieieee e 255
ESTABLISHING YOUR REXX ENVIRONMENT .oviiiiiiiiiiiiiieiiee e e s s siibtreeee s s e e s sssbsbaresssesessens 257
USING REXX WITH ISPE ...ttt ettt s s st ba e n e e e e e s as 259
USING REXX IN THE BACKGROUND (BATCH JOBS)....uciivieiieiiieeiteesreesieesveesreeeseessee s 261
DEBUGGING YOUR REXX PROGRAMuuuvvvuvururrrursrssssassses 262
INEracCtive TraCe MOUE........c.vviiiiiiiie et 262

TRAPPING ERRORS ...vuittittt ettt sttt st ettt e et s et e et s e s e e et ea e e e e s ee e e b e eesebneeesebaneas 263

SIGNAL ON CONDITION . .11ttitiiuttieeeiitteeeeeeisressesibseeessesssesssassbseessssssssssasssssssssssssssssrsseessns 263
][]\ I O = =X o] N] 0] 1 1 [N 263
CALL ON CONDITION NAME SUBROUTINENAMEvvviieiiiirieeeiiireeessisseeessssreeesssrsneessns 263
L070] Y] 0] 1 1 (o] N 263
EXAMPLES ...ttt ettt e et e e e e e e e et e e e e b e e e e e e e e e e b r e e e e aaraeeeaares 264
YN o ot NN | 1 267
REXX INSTRUCTIONSeeeiiuttteeeiittteeesiitteeeesstseeessassesessisbasesssasssesessssbasesssssssesssasresessanses 267
REXX FUNCTIONS .. 11utuvutututusssassnes 267
TSO EXTERNAL FUNCTIONS ...uvviiieiittieeeiiirteeesiittteessesseeessssbasesssassssssssssssssssssssseessasssens 267
T SO COMMANDS ...eeiiieeci ettt e e e e st r e e e e s s s s bbb e e e e e e s s s s bbb e e e e s seessssaabbbbereaeessssassberes 267
OTHER REXX REFERENCES .. .vviiiiiitiiieeiiitrieeesitseeessitaseeessisbssesssssasssssssssssssssssssssssnseseessns 268

Page [7]

Rexx Reference Manual (TSO)

Rexx is the Restructured Extended Executor Language. New with TSO/E version 2, Rexx
is a high-level procedural language that allows programmers to mix instructions with TSO
commands, and build high-powered tools and utilities, called “exec’s.

Rexx is a programming language, and a scripting language. Rexx is a fascinating
language. It is, from my viewpoint, IBM's answer to Basic. It is an English-like interpreted
language. No compiler is needed. The computer reads the instructions, one at a time, and if it can
interpret it, it will execute it.

The thing that Rexx is best suited for is to create data-manipulation tools, especially for
one-time use or for development. Once you learn how to use the language, you can tailor data in
ways you never dreamed.

Why learn Rexx? Knowing Rexx can give you a powerful advantage. Being able to
manipulate data in esoteric and creative ways can be a tremendous aid to your productivity. Rexx
can be very useful for creating and verifying test data, formatting output data, file-integrity-
checking, and creating tools that help make your job easier. More than anything else now, Rexx
is used to drive ISPF dialogues.

A Rexx program can be written far more quickly than one for COBOL or Assembler, for
the same task at hand. You wouldn't want to use Rexx in production for high-volume files,
though. That's the job of a compiled program. Rexx is for the "quickie", and low-volume tasks.

The reason | decided to write this book, is that with the reference | was using, it took too
long to find information that | was looking for. The author of that book knew his stuff, but I felt
he had no clue as to what to present, or how to present it. The organization of that book and lack
of meaningful examples was frustrating, and simply not acceptable.

This reference discusses Rexx and its use with TSO, as opposed to CMS or personal
computers. The intended audience for this book is all levels of mainframe programmers, and
"computer-literate™ users. You should be at least familiar with TSO, have a TSO UserID, and be
able to log on to a mainframe.

| wrote this from the point of view of a Rexx user, and not a teacher. While | was writing
this, 1 envisioned real-life situations that | could find myself in, and I then tried to illustrate the
best way to handle it. The examples were not written for the sake of example; they were written
to show how to solve a given problem. | added many examples from my real-life work
experience. These are execs that | used to solve real problems.

So it is my hope that this reference is easy to use, has useful and pertinent examples, and

can help you get your job done. This manual is the quickest way to get up, running, and
productive in Rexx.

Page [8]

All of the examples in this book have been tested on an IBM mainframe, on Rexx370
Vers 3.48 01 May, 1992. Any errors resulting in the use of these examples would probably then
be due to environmental differences, or the transfer of the example from this document.

If there is something about this book that really bugs you, or really pleases you, or if you
have any other comments, criticisms, or suggestions, please feel free to e-mail me at:
RexxManual@davidgrund.com.

This book is divided into five sections.

The first section is a reference, for the experienced programmer. | put this section first
because | feel that this will be the one that is used the most. With this format, you don't have to
worry about whether a Rexx component is a function, instruction, or anything else. Just flip
through the alphabetically-sorted reference, find the keyword, read, and use!

The second section of this book is a short Rexx tutorial. This is where the beginner
should start.

The third section of this book contains examples: useful examples.

The fourth section of this book is on the Rexx environment: how to establish and
maintain it, and how to use it alone, and in conjunction with ISPF.

The fifth section of this book, the appendix, contains lists of instructions by class, and
other Rexx references.

Page [9]

Section | - Reference
General Rules

Form: The Rexx language is generally free-form. You can put any number of spaces
between instructions, operands, etc.

The elements of a Rexx exec are: Rexx instructions, Rexx functions, TSO
external functions, and TSO commands.

These elements generally end at the end of a line or at the beginning of a
comment, whichever comes first. They can be stacked on the same line if
separated by semi-colons.

First Line: A Rexx exec is identified by the character string "REXX" (nho quotation marks) in
the first line of the exec, but only if allocated to SYSPROC. If the exec is part of a
SYSEXEC library, then this is not necessary. Generally, it is recommended to
start a Rexx exec off with a comment stating the name, short description, and

"REXX" keyword, as follows:
/* MyFirst - MyFirst Rexx Program */ or
/* Calcl - My Calculator Rexx */

Rexx is also case-insensitive. Use upper- or lower-case letters at your discretion. Note,
however, that some functions look at the case of letters!

All values that appear in Rexx statements are translated to upper case unless they are
enclosed in matching apostrophes or quotation marks.

In some cases, not all of the operands of an instruction are discussed. There are some
operands that are highly esoteric, that I feel will be needed only in extremely specific situations.
The appendix contains information on additional Rexx reference material.

The limit on the length of symbols (variable names) is 250 characters, although using one
of that length is usually impractical.

The storage limit for any variable is 16 MB.

Page [10]

Abbrev

Purpose: Return a 1 (TRUE) or zero (FALSE) based on the test that a word begins in a
certain string. It is a subtle variation of the LEFT function.

Type: Rexx Function

Syntax: Result = ABBREV/(word,string,length)

Usage: If the first length characters of word = string, then result will be TRUE.

Examples: Result = ABBREV/("America”,"Am",2)
/* TRUE; Result =1 */

Result = ABBREV/("America","mer",3)
/* FALSE; Result =0 */

Page [11]

ADbs

Purpose: Return the absolute value of a number: drop the sign, and format according to the
current setting of NUMERIC DIGITS.

Type: Rexx Function
Syntax: NewNum = ABS(OldNum)

Example: NewNum = ABS(-436)
NewNum will be 436.

Page [12]

Purpose:

Type:

Syntax:

Usage:

See Also:

Example 1:

Address

Return or change the setting of the environment that is currently receiving
commands

Rexx Function and Rexx Instruction

1) Address Environ string (instruction)
2) Environ = Address() (function)

Rexx passes to the environment any strings that are enclosed in quotation marks

(or apostrophes), or any that it does not know what to do with.

1) The instruction form sets the environment that will receive these strings that
are fed through by Rexx. This setting is "permanent” (for the duration of the
current exec), unless it is supplied on the same line. If it is, then the setting
that is specified is valid only for the string on that line. Rexx doesn't care what
you set the environment to at the time you use this instruction. There is no
validation at this point. The default is "TSO".

2) The function form simply returns the current environment setting

SubCom

The following Rexx exec illustrates the use of the Address function and the

Address instruction.

Say "Environ = " Address|()
Address TSO

Say "Environ = " Address()
Address ISPEXE

Say "Environ = " Address|()
Address MVS

Say "Environ = " Address()
Address Junk

Say "Environ = " Address()
Address Dave

Say "Environ = " Address|()

Will display:

Environ = TSO
Environ TSO
Environ ISPEXEC
Environ MVS
Environ JUNK
Environ DAVE

Page [13]

Example 2:

Example 3:

The following Rexx exec illustrates the effects of the use of Address:
1 "Browse Dataset (Rexx.Exec) "

2 address ispexec

3 "Browse Dataset (Rexx.Exec) "

4 address ispexec "Edit Dataset (Rexx.Exec) "

Explanation of the above exec:

1 This is a character string that Rexx does not understand, so Rexx passes it to the
environment. Since the environment was not set, it remains as "TSO". TSO, in
turn, does not know what to do with this character string, so the following
displays:

COMMAND BROWSE NOT FOUND

3 *—* "Browse Dataset (Rexx.Exec) "
+++ RC(-3) +++

2 Rexx now sets the environment to "ISPEXEC" (the name for ISPF's
environment).

3 ISPF receives this character string, and knows what to do with it, so it opens the
dataset called "Rexx . Exec" for Browse.

4 This line is setting the environment at the same time as sending the string. ISPF
then edits a dataset called "Rexx .Exec".

This exec demonstrates the "temporary™ environment setting.
address TSO
address ispexec "Edit Dataset (Rexx.Exec) "
"Browse Dataset (Rexx.Exec) "
address ISPEXEC

5 "Edit Dataset (Rexx.Exec) "

In the above exec,

Line 1 sets the environment to "TSO"

Line 2 will edit "Rexx.Exec", having set the environment temporarily to
ISPEXEC.

Line 3 will err, because TSO does not recognize the command:
COMMAND BROWSE NOT FOUND
5 *-* "Browse Dataset (Rexx.Exec) "

+++ RC(-3) +++

Line 4 will set the environment to ISPF

Line 5 will edit the dataset successfully.

Sw N

Page [14]

Purpose:

Purpose:

Type:

Apostrophes
To enclose a literal (character string).

See "Quotation Marks/Apostrophes™ for documentation on this function.

Arg
Retrieve data from the TSO command line or from a calling routine.
Rexx Function and Rexx instruction

See "Parse" for documentation on this function.

Page [15]

Purpose:

Syntax:

Examples:

Assignment Statement

To assign a value to a variable. The value you assign to the variable can be any
type: character, number, hex, binary, etc.

Variable = ValueFormat
Variable The name of the variable being assigned. It can be

up to 250 characters long, but I don't know why you
would want to do that to anyone.

Value The value that you are assigning to the variable

Format The representation of the value. The default is

character. Valid values are "X" for hexadecimal,

and "B" for binary.

A=1 assigns the value '1' to the variable 'A’

B = "F1F2F3F4"x assigns the value '1234' to variable 'B'
C ='11110010'B assigns the value 2' (X'F2") to C

Page [16]

Purpose:

Type:

Syntax:

Usage:

Example 1

Example 2

Example 3

BitAnd

Return a string that is the result of two strings that were logically AND'd together.
Rexx Function

Result = BitAnd(string1,string2,padString)
Stringl and String2 are the strings used in the AND operation.
padString is a string used for padding

To AND two strings is to multiply the bits of one string to the corresponding bits
of the other string, and return the result. In English, it reads, "If the bit of the first
string AND the corresponding bit of the second string are both on, then the
resulting bit will be on. Otherwise, the resulting bit will be off."”

padString is used to fill the shorter of the two strings (on the right) so the strings
are the same length when being processed. If no padString is supplied, the
operation works only for the length of the smaller string.

The sole purpose this function has is to do bit-level manipulation.
This function is the opposite of BitOr.

The following example will convert a one-character reply from upper-case to

lower case, by virtue of turning off bit 1:
ResultString = BitAnd('Y','10111111'B)
Say ResultString

The upper case "Y' is X'E8', or B'11101000".
The lower case 'y' is X'A8', or B'10101000'.

The following example will convert all letters of a string to lower case (taking the

above example a step further).
Sentence = "The Quick Brown Fox Jumps Over The Lazy Dog"
ResultString = BitAnd(Sentence, '10111111'B,'10111111"'B)

The following example does the exact same thing.
Sentence = "The Quick Brown Fox Jumps Over The Lazy Dog"
ResultString = BitAnd(Sentence, 'BF'X, 'BF'X)

Notice that the coding in this example is a little shorter, but not as clear to the

reader: a binary 10111111 equals a hexadecimal BF. | prefer example 2 to
example 3 because it is clearer.

Page [17]

Purpose:

Type:

Syntax:

Usage:

Example 1

Example 2

Example 3

BitOr

Return a string that is the result of two strings that were logically OR'd together.
Rexx Function

Result = BitOr(string1,string2,padString)
Stringl and String2 are the strings used in the OR operation.
padString is a string used for padding

To OR two strings is to add the bits of one string to the corresponding bits of the
other string (with no carry), and return the result. In English, it reads, "If either the
bit of the first string OR the corresponding bit of the second string are on, then the
resulting bit will be on. Otherwise, the resulting bit will be off."”

padString is used to fill the shorter of the two strings (on the right) so the strings
are the same length when being processed. If no padString is supplied, the
operation works only for the length of the smaller string.

The sole purpose this function has is to do bit-level manipulation.
This function is the opposite of BitAnd.

The following example will convert a one-character reply from lower-case to

upper case, by virtue of turning on bit 1:
ResultString = BitOr('y','01000000'B)

The lower case 'y' is X'A8', or B'10101000'".
The upper case "Y' is X'E8', or B'11101000".

The following example will convert all letters of a string to upper case (taking the

above example a step further).
Sentence = "The Quick Brown Fox Jumps Over The Lazy White Dog"
ResultString = BitOr (Sentence,, '01000000'B)

String2 is padded to the length of Sentence with binary '01000000'.

The following example does the exact same thing.
Sentence = "The Quick Brown Fox Jumps Over The Lazy White Dog"
ResultString = BitOr (Sentence,, '40'X)

Notice that the coding in this example is a little shorter, but not as clear to the
reader: a binary 01000000 equals a hexadecimal 40. | prefer example 2 to
example 3 because it is clearer.

Page [18]

Purpose:

Type:

Syntax:

Usage:

Example 1

Example 2

BitXOr

Return a string that is the result of two strings that were logically XOR'd together.
Rexx Function

Result = BitXOr(stringl,string2,padString)
Stringl and String2 are the strings used in the AND operation.
padString is a string used for padding

To XOR two strings is to compare the bits of one string to the corresponding bits

of the other string, one, by one, and return the result of the compare. In English, it
reads, "If the bit of the first string AND the corresponding bit of the second string
are the same, then the resulting bit will be off. Otherwise, the resulting bit will be
turned on.

padString is used to fill the shorter of the two strings (on the right) so the strings
are the same length when being processed. If no padString is supplied, the
operation works only for the length of the smaller string.

If you XOR something to itself, the result will be hex zeroes.
The sole purpose this function has is to do bit-level manipulation.

You can use this instruction to do some rudimentary character-string encryption.
See the example below.

The following example will demonstrate the effect of this function.
ResultString = BitXOr ('11111111'B,'01010101'B)
Say C2X (ResultString)

Stringl: 11111111
String2: 01010101
Result: 10101010 (X'AA")

This example will further demonstrate the effect of this function.
ResultString = BitXOr ('10101010'B,'01010101'B)
Say C2X(ResultString)

Stringl: 10101010

String2: 01010101
Result: 11111111 (X'EF)’

Page [19]

Example 3 This example demonstrates how to encrypt a character string. Use the exact same

instruction to decrypt it.

Sentence = "The quick brown fox jumps over the lazy dog"
Say Sentence

Sentence = BitXOr (Sentence,, 'BF'X)

Say Sentence

Sentence = BitXOr (Sentence,, 'BF'X)

Say Sentence

Displays:
The quick brown fox jumps over the lazy dog
K o o o o o o o o o o 0 s o s s s e s s s s s e s e e s s . I{e e o o e o o oo o0

The quick brown fox jumps over the lazy dog

Page [20]

B2X

Purpose: Convert a binary string to a hexadecimal representation
Type: Rexx Function
Syntax: Result = B2X(binarystring)

Result is the hexadecimal representation of binarystring, which is a string of
zeroes and ones.

Usage: Convert a binary to a hexadecimal number

Examplel The following exec:
Say "B2X('11101111')=" B2X('11101111")

Will display the following:
B2X('11101111')= EF

Page [21]

Purpose:

Type:

Syntax:

Parameters

Usage:

Example 1

Example 2

Example 3

Call

To invoke, or transfer control to a subroutine (also commonly referred to as a
procedure) or program, expecting to come back.

Rexx Instruction

Call subroutine parameters
Call subroutine (parameters)
Call program

Any number of variables that are intended to be used by the called subroutine.

A Call is used to facilitate structured programming. It is widely used to break the
mainline processing up into blocks of code that are referenced by the mainline
section. A lot of the examples illustrate structured programming and the use of
Calls.

To call a Rexx exec or Clist implicitely, simply issue an "Address TSO"
command, followed by the name of the Rexx exec or Clist, on separate lines.

A Call is also used to transfer control to a program, with the intention of regaining
control. To call a program in the Linklist, you don’t need to know the exact name
of the library that the program resides in. Instead of issuing a Call, you issue the
following command:

ADDRESS LINKMVS pgmname

Call ProcO1 /* Call program section 1 */

Proc01:
{code}
{code}

Return

The following code snippet is part of an exec that compares two disk files:
Address TSO
"Call 'SYS1.LINKLIB(IEBCOMPR)'"
If RC = 0 then
Say "The modules are identical"

The following code snippet is part of an exec that compares two disk files:
Address LinkMVS IEBCOMPR
If RC = 0 then

Say "The modules are identical"

Page [22]

Example 4 Call a procedure, passing four variables.
Call Procl(a b c¢) d
Call Procl e £ g h
Exit

Procl: Procedure
Parse Arg pl p2 p3

Say “I am in Procl. The parameters I was passed are “ pl p2 p3
Return

The output from this example code will be:
I am in Procl. The parameters I was passed are A B
EF

CD
I am in Procl. The parameters I was passed are G H

Page [23]

Call On

Purpose: Establish a subroutine to handle an error condition
Type: Rexx Instruction
Syntax: Call On condition

See "Trapping Errors” in the Environment section of this manual for a discussion
of this instruction.

Page [24]

Center/Centre

Purpose: To center a string within a larger string

Type: Rexx Function

Syntax: Center(string,length,pad)

Usage: Center string within a larger string of length characters. If pad is present, it will

be used as the pad character. If it is not, spaces will be used.
This function can be specified as either “Center” or “Centre”.

Example: The following excerpt of a Rexx Exec
Heading = "Tuesday"
Field = Center (heading,30,'-")
Say Field

will result in

Page [25]

Clist

Purpose: Run a TSO command list the "old" way. This is what was used to accomplish the
functions that Rexx Execs accomplish today.

Clists are mentioned here only because of their history and effect on today's Rexx
language. | am in no way advocating using them. Anything you could do with a Clist can be
accomplished with a Rexx exec, and usually cleaner.

Clists and Rexx execs alike are typically stored in a PDS (partitioned dataset). A Clist

library is allocated to the DDName SYSPROC, while a Rexx exec library is allocated to the
DDName SYSEXEC.

Page [26]

Comma

Purpose: To continue a Rexx statement
Example: The following Rexx Exec:
/* Tl - Example Rexx Program */

JanuarySales = 100
FebruarySales = 150
MarchSales = 5
AprilSales = 15
MaySales = 10

Total = JanuarySales + FebruarySales + ,
MarchSales + AprilSales + MaySales
Say 'The total sales = ' Total

will produce the result "280". Notice the continuation comma after
FebruarySales.

Page [27]

Comments
Purpose: To document an exec, or annotate the lines within.

Syntax: Start with /* and with */. They can span any number of lines, but cannot be nested
(supplied within another set).

Usage: Typically, you would comment each block of code with a comment line preceding
that block of code. If you wish to comment one particular line, code the comment
to the right of that line.

Example: [* This is a Rexx comment */
Say "Hello, World" /* This is also a Rexx comment */
A =1 /* Set the value of A to 1 */
B =2 /* Set the value of B to 2 */
/* C =3 */ /* This instr was commented out */
D =4 /* Set the value of D to 4 */

Page [28]

Compare

Purpose: Compare two strings

Type: Rexx Function

Syntax: Result = COMPARE(string1,string2,pad)

Usage: Compare two strings, and return the number of the position where the inequality

between the two strings starts. If the strings are equal, there is no inequality, and
so the function returns a zero.

When one string is shorter than the other, it is first padded on the right with the
pad character. The default pad character is a space.

Characters within quotation marks are treated with respect to their case. An
upper-case letter will not equal a lower-case one.

Example: Result = COMPARE ("Apples", "Oranges")
Say Result

Will yield 1, because the first position is unequal.

Result = COMPARE ("Apples", "Apple")
Say Result

Will yield 6, because the sixth position of the first string, "s", is unequal to the
sixth position of the second string, which was padded to a blank.

Result = COMPARE ("Apples", "Apples ")
Say Result

Will yield 0, because the strings after padding are identical.

Result = Compare ("Applesssssssss", "Apples", "s")
Say Result

Will yield 0, because the strings after padding are identical.

Page [29]

Comparison Operators

REXX comparison operations resolve to a 1 if the result of the comparison is true, and a O if the
result of the comparison is false. REXX also uses an equality concept called 'strictly equal'.

Two values are 'strictly equal’ if they match exactly, including imbedded blanks and the case of
letters. Two values are 'equal’ if they don't match exactly, but they resolve to the same quantity
after REXX substitution and evaluation.

The following comparison operators can be used in REXX expressions:
== strictly equal

= equal

\== not strictly equal (can also use not sign, X'5F')
\= not equal (can also use not sign, X'5F")

> greater than

< less than

>< greater than or less than (same as not equal)
>= greater than or equal to

<= less than or equal to

\< not less than

\> no greater than

REXX Comparison Operators Order of Precedence:

\ - (not)
|| - concatenation
& - AND

| && - logical OR and EXCLUSIVE OR

Page [30]

Purpose:

Concatenation
To combine two or more strings or literals into one variable.

One way concatenation is achieved by the use of "Or" bars. These are the vertical
bars that can be found on the keyboard to the right of the +/= key. This is the
preferred way, since it is explicit. If you use this method, all blanks between the
two values that are being concatenated will be suppressed. If you want spaces
between your variables, you must concatenate them as well. See example 1
below.

Another way to achieve concatenation is to simply put two variables of different
types next to each other (juxtaposition). (Note that juxtaposition is accomplished
by simply not using the "or" bars). Two or more intervening blanks will be
compressed down to one. Again, if you want spaces between your variables, you
must concatenate them as well. See example 2 below.

In summary, use the "Or" bars if you wish to strip out all intervening spaces. Use
juxtaposition if you wish to keep just 1.

Examples using

"Or" bars:

Say "Example 1" | "Hello World"
Say "Example 1" || "Hello World"
Say "Example 1"||"Hello World"

All of the above will result in the same thing:
Example 1lHello World

Notice that all intervening spaces were removed by Rexx.

Say "Example 1"||" "||"Hello World"

will result in:

Example 1 Hello World

Notice the intervening space (between "1™ and "Hello").

Examples using

juxtaposition:

Say "Example 2""Hello World"

Notice that in this example, there is no legitimate concatenation. The quotation
marks intended to define literals (variables of the same type). Instead, Rexx
interpreted this as one string, and by its rules, translated two quotation marks into
one.

Say "Example 2" "Hello World"
Say "Example 2" "Hello World"

Both of the above examples will result in:
Example 2 Hello World

Page [31]

Purpose:

Type:

Syntax:

Usage:

Example:

Condition
Retrieve the setting information for the currently trapped REXX condition.
Rexx Function

String = CONDITION('code’)

String is the returned setting. Code is supplied to request the type of information.
The default is I.

Codes:

C- Return the name of the current condition

D- Return the descriptive string associated with the condition

I- Return the name of the actual instruction that was executing when the condition
occurred

S- Return the status of the condition trap. This will be either ON, OFF, or
DELAY.

This function is used in error trapping.

In the following exec, we try to add Increase to Salary, neither of which has been
defined:

Signal On NoValue

Salary = Salary + Increase
Say "My salary = " Salary
exit

NoValue:

Say "Undefined variable on line" SIGL
Say "The current trapped condition is"

condition ("C")

Say "The variable is" condition ("D")
Say "The name of the instruction is"

condition ("I")

Say "The instruction is:" sourceline (SIGL)
Say "The status of the condition trap is"

condition ("S")

Will result in the following display

Undefined variable on line 4

The current trapped condition is NOVALUE

The variable is SALARY

The name of the instruction is SIGNAL

The instruction is: Salary = Salary + Increase
The status of the condition trap is OFF

Page [32]

Continuation
Purpose: To code an instruction that requires more than one line.
Syntax: Instructions are continued with a comma.

See Comma for documentation on this subject.

Page [33]

Purpose:
Type:
Syntax:

Usage:

Example:

Copies
Copies a string to itself a specified number of times.
Rexx Function
Result = COPIES(string,quantity)
Set result to quantity sets of string.

Line = COPIES("™*',75)
Will result in the variable "Line" containing 75 asterisks.

Page [34]

Purpose:
Type:
Syntax:

Usage:

Example:

C2D

Convert a string to its decimal equivalent
Rexx Function
Result = C2D(string)

Internally, the function first converts the string to its hexadecimal equivalent.
Then it converts that hexadecimal value to decimal. It is the inverse of D2C.

result = C2D(" ") [* Two spaces */
After execution of the previous instruction, result will contain 16448, the decimal
representation of X'4040'

result = C2D("6")
result will contain 246, the decimal representation of X'F6'

Page [35]

Purpose:
Type:
Syntax:

Example:

C2X

Convert a string to its hexadecimal equivalent
Rexx Function
Result = C2X(string)

result = C2X(" ") [* Two spaces */
result will contain 4040

result = C2D("6")
result will contain F6

Page [36]

Purpose:

Type:

Syntax 1:

Syntax 2:

Examples:

DataType

This is a Rexx built-in function that will allow you to test to see the type of data a
variable contains. There are two forms of this function.

Rexx Function

Result = DATATYPE(string)
If string was a number, result would contain "NUM". Otherwise, it would contain
"CHAR".

Result = DATATYPE(string,type)
Using this form, result will contain a one (TRUE) if string corresponds to type.
Otherwise, it will contain a zero (FALSE).

Type | Description

Alphanumeric: A-Z, a-z, 0-9
Binary: 0 or 1 only
Double-byte character set
Lower-case letters
Mixed-case letters

Number

Symbol: valid Rexx symbol
Uppercase letters

Whole number

Hexadecimal number: 0-9, A-F

X|g|C|»|Z|Z|r|O|®m|>

The following excerpt:
If datatype("Dave",M) then

Say "Dave is mixed case"
else

Say "Dave is not mixed case"
will display:

Dave 1s mixed case

Page [37]

Purpose:

Type:

Syntax:

Date

This is a REXX built-in function that will provide you with the current date, in a

variety of different formats.
Rexx Function

Result = DATE(option)

Based on the specification of the Options below, "result” will contain the date in

the corresponding format, if the current date was April 8, 1997:

Usage: see the chart below

Option | Meaning Format Example

(blank) | European dd Mmm yyyy 8 Apr 1997

N

B Basedate: Number of complete days nnnnnn 729121
since January 1, of the year 1.

C Century: Number of days in this nnnnn 35527
century

D Days: Number of days so far this year | nnn 98

E European dd/mm/lyy 08/04/97

J Julian date yyddd 97098

M Name of the current month Mmmmmmmm April

@) Ordered, suitable for sorting yy/mm/dd 97/04/08

S Ordered, suitable for sorting yyyymmdd 19970408

U USA format mm/dd/yy 04/08/97

W Name of current weekday Dddddddd Tuesday

option is not case sensitive. You can use either upper or lower case.

Examples:

If today was April 8, 1997:
Today's date is date()

will yield:
Today's date is 8 Apr 1997

Today 1is Date (M)
will yield:
Today 1is April

Page [38]

DelStack

Purpose: To delete the most recently-created TSO stack in preparation for use of it.
Type: TSO Command

Syntax: DELSTACK

Usage: Use this instruction right before you begin adding items to the TSO stack. This

ensures that you don't inadvertently process data that was left on the stack by a
previous program.

This is typically used in conjunction with the (Parse) Pull instruction.

Page [39]

DelStr

Purpose: Delete characters from a string

Type: Rexx Function

Syntax: Newstring = DELSTR(string,start,length)

Usage: Remove characters from string starting with position start, and for a length of

length. The resulting string will be placed in newstring. The default for length is
the entire remainder of the string.

Example:
Result = DELSTR("ABCDEFGHIJKLMNOPQRSTUVWXYZ",3,20)

After execution of this instruction, result will contain "ABWXYZ".

Page [40]

DelWord

Purpose: Delete words from a string

Type: Rexx Function

Syntax: Newstring = DELWORD(string,start,quantity)

Usage: Remove quantity words from string starting with word number start. The

resulting string will be placed in newstring.

Example:
Result = DELWORD("FourScore and seven years ago, our fathers ",3,4)
After execution of this instruction, result will contain
"FourScore and fathers".

Page [41]

Digits

Purpose: Specify the number of digits that Rexx carries in arithmetic operations (precision).
Type: Rexx Function
Syntax: Numeric Digits n

See Numeric Digits for documentation on this function.

Page [42]

Do

Purpose: Execute a set of instructions, either under the control of a counter variable, or
based upon current program conditions.

Type: Rexx Instruction

Syntax: DO expression
variable=start
TO limit

BY increment

WHILE expression

UNTIL expression

FOREVER

(one or more statements to execute)
END variable

Usage: There are several formats of the DO instruction. Each of the operands of the DO
instruction as illustrated above are optional.

For the sake of explanation, the instructions in between the DO and END are
commonly referred to as a DO Group.

If no operands are supplied, then the instructions in the DO Group are executed
one time.

expression Any valid REXX expression, but it must resolve to a positive whole number.

DO 19 Do I = 19
(one or more instructions) (one or more instructions)
END End

Both of the above examples would execute the instructions 19 times.

variable=start

TO limit

BY increment
Choose a control variable, and assign it a start value. This control variable is
incremented by the BY amount on each iteration of the loop. The loop will stop

when the control variable reaches the limit.
Do I = 1 TO UpperLimit BY 1

(one or more instructions)
End

In the above example, | is the control variable. It starts with a value of 1, and the
loop continues until I = UpperLimit.

BY can be a negative number if UpperLimit starts out to be less than the control
variable.

Page [43]

WHILE expression
UNTIL expression

FOREVER

END Variable

Examples:

Continue to perform the instructions WHILE or UNTIL the expression is true.
WHILE and UNTIL have opposite connotations. WHILE will test for a true
condition before the do group is executed. UNTIL will test for a true condition at
the end of the do group. Using UNTIL assures you that the do group will execute
at least one time.

Times =1

StillIn = 'Y'

Do While StillIn = 'Y'
Say "I am working on iteration number "Times
Times = Times + 1
If Times > 5 then StillIn = 'N'

End

Times = 1

StillIn = 'Y'

Do Until StillIn = 'N'
Say "I am working on iteration number "Times
Times = Times + 1
If Times > 5 then StillIn = 'N'

End

The two examples above will produce identical results:
am working on iteration number 1
am working on iteration number 2
am working on iteration number 3
am working on iteration number 4
I am working on iteration number 5

Notice, however, that the only difference between the two examples is the
expression following the conjunction (WHILE/UNTIL)

HoH - H

If you are in doubt as to which conjuntion to use, then apply the KIS principle
(Keep It Simple). Use the one that makes the code easier to understand.

Execute the do group continuously, until "told" to stop.

A control variable name can be supplied to an END statement to clarify which
DO group the END statement refers to.
Do I =1 to 4
Do J =1 to 13
(one or more instructions)
End J
End I

Do I =1 to 25
Say "Hello, world!"
End

The above example will print the message Hello World! 25 times.

Page [44]

Caution:

Do I =1 to O
Say "Hello, world!"
End

The above example will print nothing, because 0 < 1.

Do I =1 to 10 by 2
Say "Hello World #"I
End

The above example will print:
Hello World #1
Hello World #3
Hello World #5
Hello World #7
Hello World #9

Do I =1 to 100 by 2 for 5
Say "Hello World #"I
End

The above example will print:
Hello World #1
Hello World #3
Hello World #5
Hello World #7
Hello World #9

(Only five iterations)

/* Testl - Example Rexx Program - Rexx EXEC */
Do Forever
Say "Tell me your name, or enter 0 to quit"
Pull Answer

If Answer = "0" then Leave
Say "You told me that your name was" Answer"
End

The above Rexx exec will echo back whatever you type in, until you enter a zero :
You told me that your name was HOMER SIMPSON

Here is a common trap. After a do group completes, your index variable will be
one higher than the limit. In the following example, assume you are traversing an
array of records that you read in from a disk file, and that the disk file contained
114 records.

Do CurrRecNO = 1 to IPRec.O
(processing...)
End

At this point, CurrRecNO will contain 115, and not 114.

Page [45]

Drop

Purpose: "Unassign" a variable. This has the effect of converting a variable name to a
literal (in upper case).

Type: Rexx Instruction
Example: The following excerpt from a Rexx exec:
Greeting = "Merry Christmas"

Say Greeting
Drop Greeting
Say Greeting

Will yield the following results:
Merry Christmas
GREETING

Page [46]

Purpose:
Type:
Syntax:

Usage:

Example:

D2C

Convert a decimal number to a character.
Rexx Function
Result = D2C(number,length)

Convert the decimal number to its internal hexadecimal format. It is the inverse of
C2D.

Number must be a whole number or a variable containing a whole number. It
must also be non-negative, unless length is specified.

Length is the length of the result, and is optional. If Length is not specified, Result
will be left-zero-suppressed. If Number is negative, then Length is required.

The expression displays

Say D2C(240) 0 (X'FO')

Say D2C(240,5) 0 (right justified in a 5-
byte field)

Say D2C(80) & (X'50")

Page [47]

D2X

Purpose: Convert a decimal number to a hexadecimal value.
Type: Rexx Function
Syntax: Result = D2X(number,length)
Usage: Convert a decimal number to its hexadecimal representation. It is the inverse of
X2D.
Length- Length of the final result, in characters (optional)
Example: The expression displays
Say D2X(240) FO
Say D2C (80) 50

The maximum value that can be converted is 999,999,999.

Page [48]

End

Purpose: Terminate a "DO" loop or block.

See the documentation on Do for more detailed information.

Page [49]

ErrorText

Purpose: This is a REXX built-in function that will return the English language text for an
error code.

Type: Rexx Function

Syntax: Say ErrorText(RC)
where RC is the error code. Error codes are set by all Rexx errors.

Usage: To report back to the user, in English, what the problem is.

Example:

/* Testl - Example Rexx Program - Rexx EXEC */
Do I =1 to 20
Say "Error "I" is "errortext (I)

End

The above Rexx exec will display the following output:
Error 1 is

Error 2 is

Error 3 is Program is unreadable

Error 4 is Program interrupted

Error 5 is Machine storage exhausted
Error 6 is Unmatched "/*" or quote

Error 7 is WHEN or OTHERWISE expected
Error 8 is Unexpected THEN or ELSE

Error 9 is Unexpected WHEN or OTHERWISE
Error 10 is Unexpected or unmatched END
Error 11 is Control stack full

Error 12 is Clause too long

Error 13 is Invalid character in program
Error 14 is Incomplete DO/SELECT/IF
Error 15 is Invalid hexadecimal or binary string
Error 16 is Label not found

Error 17 is Unexpected PROCEDURE

Error 18 is THEN expected

Error 19 is String or symbol expected
Error 20 is Symbol expected

Page [50]

ExeclO

Purpose: Perform input/output operations.
Type: TSO Command
Syntax: "EXECIO quantity operation ddname seq (options”
where
quantity represents the number of records to read or write
operation DiskR for "read from disk"
DiskW for "write to disk"
DiskRU for "read for update"
ddname The ddname of the file for which 1/O is to be performed.
The file must be allocated by TSO prior to its use.
seq Sequence number of the desired record, for disk read
operations only
options STEM stem. FINIS
STEM is specified when reading records from or writing records to an
array. stem is the "name" of the array. If STEM is not specified, operations
are performed on a disk file instead of an array.
Specify FINIS to close a disk file when done processing
Usage: If you perform a disk read operation, and you reach end-of-file, RC will be set to
az2.
Examples:
Read Write Ex# | Comments
Disk TSO Stack | 1 Read a disk file into the TSO stack
Disk Array 2 Read a disk file into an array
TSO Stack | Array 3 Read the TSO stack into an array
TSO Stack | Disk 4 Read the TSO stack, write a disk file
Array Disk 5 Read an array, write a disk file
Array TSO Stack | 6 Read an array into the TSO stack
Disk Disk N/A | Read one disk file; write another:
1) Read disk file into array
2) Write array to disk file
Disk Disk 7 Copy a disk file, one record at a time
Disk Disk 8 Disk update (update a record in place)
Array Array 9 Copy one array to another
TSO Stack | TSO Stack | N/A | (Only one TSO stack is available)

Page [51]

Example 1: Read a disk file into the TSO stack

“Alloc fi(DDIn) Da(user.work) shr"
NewStack
"ExecIO * DiskR DDIn (Finis "
"Free Fi(DDIn)"
And then, to process the stack:
Do while queued() > O

Pull Oneline

Say OneLine
End
Caution: If you read information into the stack, and then leave it there, whether intentionally or

by an error in your Rexx exec, TSO will try to execute it.

Example 2: Read a disk file into an array

"Alloc fi(DDIn) Da (Rexx.exec (TestData)) shr"
"ExecIO * DiskR DDIn (Stem Lines. Finis "
"Free Fi(DDIn)"
And then, to process the array:
Say "The disk file contains " Lines.0 "lines. Here they are:"
Do I =1 to Lines.O

Say Lines.I
End

Example 3: Read the TSO stack into an array

/* If the queue is empty, say so and get out */
If queued() < 1 then do

say "The TSO stack is empty!"

Exit 16
End
/* Now read the stack into an array */
Lines.0 = queued()
Do I = 1 to queued()

Pull NewLine

Lines.I = NewLine
End
And then, to process the array:
Do I =1 to Lines.O

Say Lines.I

End

Example 4: Write the TSO stack to disk

If queued() > 0 then do

"Alloc Fi(DDOut) da(work.data(test2)) shr"

"ExecIO * DiskW DDOut (Finis "

"Free Fi(DDOut)"
End
Else

Say "The queue was empty; no file written!"

Example 5: Write an array to disk

Page [52]

"Alloc Fi(DDOut) da(work.data(test3)) shr"
"ExecIO * DiskW DDOut (Stem Recds. Finis "
"Free Fi(DDOut)"

Example 6: Read an array into the TSO stack
"Alloc Fi(DDIn) da(work.data(testl)) shr"
"ExecIO * DiskR DDIn (Finis "
"Free Fi(DDIn)"
Say "I read "queued ()" records into the TSO stack"
DelStack /* Delete this stack when done */

Example 7: Copy a disk file, one record at a time
"Alloc Fi(DDIn) da (work.data (testl)) shr"
"Alloc Fi(DDOut) da (work.data(test6)) shr"
RecsCopied = 0
Do Forever

"ExecIO 1 DiskR DDIn" /* Read a disk record*/

If RC = 0 then do /* Not end of file */
"ExecIO 1 DiskW DDOut" /* Write a disk rec */
RecsCopied = RecsCopied + 1 /* Count the records copied */

End

Else Do /* End of file */
"ExecIO 0 DiskR DDIn (Finis"™ /* Close the input file */
"ExecIO 0 DiskW DDOut (Finis" /* Close the output file */
Leave

End

End
"Free Fi(DDIn,DDOut)"
Say "I copied "RecsCopied" records"

Example 8: Disk Update (update a record in place)
This is accomplished by reading a disk record (for update) into the stack, removing it from the
stack into a variable, modifying it (in the variable), putting it back into the stack, and then

writing the record back to disk, from the stack.
"Alloc Fi(DDUp) da(work.data(testl)) OLD"

"NewStack" /* Establish a new stack */
RecsUpdated = 0

"ExecIO 1 DiskRU DDUp 4 " /* Read record number 4 */
Pull Record /* Read stack */
Say "Record number 4 is" Record

Record = left (Record,10) | |"* this asterisk is in column 11"

Say "The record was changed to:" Record

Push Record /* Put it back into the stack*/
"ExecIO 1 DiskW DDUp " /* Write the record back */
RecsUpdated = RecsUpdated + 1

"ExecIO 0 DiskW DDUp (Finis" /* Close the I/O file */
"Free Fi (DDUp)"

"DelStack" /* Delete the new stack */

Say "I updated "RecsUpdated" records"

Example 9: Copy one array to another
"Alloc Fi(DDin) da (work.data (testl)) SHR"
RecsCopied = 0
"ExecIO * DiskR DDin (stem Recs. Finis)" /* Read the disk into array */
Say "There are "Recs.0" records in the Recs array"

Page [53]

"Free fi(DDIn)"
Do I = 1 to Recs.O
Recs2.I = Recs.I
End
Recs2.0 = Recs.O0
Say "There are "Recs2.0" records in the Recs2?2 array"
Do I =1 to Recs2.0
Say Recs2.I
End

Page [54]

Purpose:

Type:

Syntax:

Usage:

Example:

Exit
Terminate a Rexx exec, and optionally set a return code.
Rexx Instruction

Exit ReturnCode
where ReturnCode is any code you wish to set.

Typically, the Exit instruction is coded at the end of a Rexx exec's processing, but
it can indeed be used to prematurely terminate a Rexx exec. ReturnCode is the
MVS return code, and can be tested by a calling program (another Rexx exec, for
example), or by JCL.

To check for charcter strings instead of words, use Index.

Exit 16 /* Tell the caller I failed */
Exit 0 /* Tell the caller I processed ok */

Page [55]

Purpose:
Syntax:

Usage:

Example:

Expose
Make a local variable available to an external routine
PROCEDURE EXPOSE variable
Typically, when an exec calls a procedure, it passes to the procedure all of the
necessary values. The procedure, by rules of good coding, hides all of its local
variables (by using the "Procedure" statement. If the procedure wants to pass one

of those variables back, it can simply "Expose™ the variable.

The Expose, used from inside a procedure, makes variables defined outside the
procedure available to it.

This is an example of a program that will calculate a bowling average for a five-
game tournament.

/* Testl - Example Rexx Program */
Call GA 157 202 170 160 144

Say "Your bowling average is " Result
Say "Your high game was " HighGame
Say "Your low game was " LowGame
Exit

GA:

Procedure Expose HighGame LowGame

Arg Gamel Game2 Game3 Game4 Gameb
Total = Gamel + Game2 + Game3 + Gamed + Gameb
BowlAverage = Total / 5
HighGame = 0
If HighGame
If HighGame
If HighGame
If HighGame
If HighGame
LowGame = 300

Gamel then HighGame = Gamel
Game2 then HighGame = Game2
Game3 then HighGame Game3
Game4 then HighGame Game4
Game5 then HighGame = Gameb

NN NN A

If LowGame > Gamel then LowGame = Gamel
If LowGame > Game2 then LowGame = Game2
If LowGame > Game3 then LowGame = Game3
If LowGame > Gamed4 then LowGame = Gamed
If LowGame > Gameb then LowGame = Gameb

Return BowlAverage
In the above example, the first line is a Call to procedure "GA". It passes five
bowling scores.

The first thing that procedure "GA" does, is make the variables HighGame and
LowGame available to the caller, by Exposing them. Note that if the entire
Procedure statement was removed, all of the variables would be available. In
larger programs, that could be a problem.

See Procedure for more examples.

Page [56]

External

Purpose: Extract the number of terminal buffer or command stack elements that have been
logically typed ahead by the terminal user.

See PARSE EXTERNAL for documentation on this subject.

Page [57]

Find

Purpose: Return the position of a word/words in a sentence
Type: Rexx Function
Syntax: Result = FIND(sentence,words)

where result is the word number where words appears in sentence. Result is O if
words does not appear (as actual words) in sentence. (By definition, "word" is a
character string enclosed by delimiters.)

Examples:
Position = FIND('Fourscore and seven years ago', 'years')

will result in 4. years is the fourth word in the sentence.

Position = FIND('Fourscoreandsevenyearsago', 'years')
will result in 0. years does not appear as a word in the sentence. (The
sentence contains only one word.)

Say FIND('Fourscore and seven years ago', 'and seven')
will result in 2.

Page [58]

Form

Purpose: Returns the current setting of "Numeric Form".
Type: Rexx Function
Syntax: CurrSetting = Form()

where CurrSetting will contain either "SCIENTIFIC" or "ENGINEERING"

See also Numeric Form for documentation on this function.

Page [59]

Purpose:

Type:

Syntax:

Usage:

Example:

Format

To print a number
Rexx Function

Result = Format(number,left-of-decimal,right-of-decimal)

where Result is the formatted representation of number. left-of-decimal denotes
how many digits to display on the left side of the decimal point, padded with
blanks. right-of-decimal denotes how many decimal digits to display on the right
side of the decimal point, zero-filled.

This function is used to display numbers so they line up with others being
displayed, or to display a number in a certain way.

/* Testl - Example Rexx Program - Rexx EXEC */
Say "How much money did you have yesterday?"
Pull YAmount

Say "How much money do you have now?"

Pull NAmount

Diff = NAmount - YAmount
If Diff > 0 then DiffWord
else Diffword
Diff = ABS(Diff)

Say "Yesterday, you had $" Format (YAmount, 4,2)
Say " Now, you have $" Format (NAmount,4,2)
Say "You "DiffWord" $" Format (Diff,4,2)

"Gained"
"*Lost*"

In the above example, when the Rexx exec asked:
How much money did you have yesterday?
And you answered: 2

And then the Rexx exec asked:

How much money do you have now?

And then you answered: 1.5
The Rexx exec would display:
Yesterday, you had $ 2.00
Now, you have $ 11.50
You *Lost* $ 9.50

Notice how the amounts line up. Without the formatting provided by the Format

function, Rexx would display the following:
Yesterday, you had $2

Now, you have $11.5
You Gained $9.5

Page [60]

Fuzz

Purpose: Returns the current setting of "Numeric Fuzz".
Type: Rexx Function
Usage: This is an inquiry as to this setting: how many low-order digits Rexx should

ignore in comparisons.

See Numeric Fuzz for documentation on this function.

Page [61]

Purpose:

Type:

Syntax:

Expression:

Examples:

Comparing
strings:

If

Test for certain conditions (via program expressions), allowing action to be taken
based on the results of the test.

Rexx Instruction

IF expression THEN If expression THEN DO

one instruction one or more instructions
ELSE END

one instruction ELSE DO

one or more instructions
END

Any valid program expression. If the statement is TRUE, the expression evaluates
to a one. Conversely, if the expression is false, the expression evaluates to a zero.
Rexx uses that value to determine whether it should execute the "THEN"
instructions, or the "ELSE" instructions.

The operators that can be used in an expression follow:

> IS greater than

>= is greater than or equal to
< is less than

<= is less than or equal to

= \= <> is not equal

= equal: numerically equivalent;
equivalent when padded with blanks

== strictly equal: exactly the same

The following statements are

TRUE FALSE

1 <2 1 > 2

2 >1 2 <1

3 <> 4 4 <> 4

"S5p" = "5" "S5p" = = "5" (b represents a space)
.02 = 0.02 .02 = = 0.02

Do NOT use "If >" to compare strings. Before a compare is done, high-order

blanks are removed. Therefore, the following statement
If " C4" < "BBB"

will result in false.

Page [62]

You can use the Compare function to compare strings, but only for equality or
inequality. To compare the value of strings, convert each character with C2D first,
as follows:

Do N = 1 to length (OldKey)
If C2D(substr (0ldKey,N,1)) < C2D(substr (NewKey,N,1)) then
Leave
If C2D(substr (0ldKey,N,1)) > C2D(substr (NewKey,N,1)) then Do
Say "The input file is out of sequence!"
Exit
End
End

Page [63]

If, Compound

Purpose: To allow more than one expression in an "IF" statement.
Type: Rexx Instruction
Syntax: If expression bo expression bo expression...

Where:

expression is as defined above
bo is a Boolean operator.

Boolean
operator: & All expressions are true
| At least one expression is true. (You must use the "OR" bar; you cannot
use the word "OR"
&& Only one of two expressions is true, and not both
Examples:
If month = "DECEMBER" | month = "JANUARY" | ,
month ="FEBRUARY" then
season = "WINTER"
CandidateA = "Incumbent"
CandidateB = "Incumbent"
If CandidateA = "Incumbent" && ,
CandidateB = "Incumbent" then

Say "Input is okay"
Else
Say "Dummy! They can't both be incumbents!"

The previous excerpt of code will call you a dummy, because you told the
program that both candidates were incumbents.

Page [64]

If-Then-Do

Purpose: Execute one or more instructions one time based on some condition.
Type: Rexx Instruction
Syntax: IF expression THEN DO

END

where expression is any valid Rexx expression.

Example: If A = B then do
(one or more instructions)
End

In this example, one or more instructions isexecuted only if A =B.

Page [65]

Purpose:

Type:

Syntax:

Note:

Examples:

Index
Return the position of a character string in another
Rexx Function
Result = INDEX(object, source)
where result is the position number where source appears in object. Result is O if
source does not appear in object.
Index differs from Pos in that object and source are in opposite sequence in the

command.

Say Index('Fourscore and seven years ago', 'and seven')
will return "11".

Say Index('Fourscoreandsevenyearsago', 'andseven')
will return "10".

Page [66]

Purpose:

Type:

Syntax:

Examples:

Insert

Copy a string into another string.
Rexx Function

Result-string = INSERT (new-string,old-string,where)

where result-string is the string that will contain the old-string with the new-string
inserted into it. new-string will be inserted into old-string after the where position.
If where is greater than the length of old-string, then old-string wll be padded
with enough blanks to accomodate the insertion operation.

Say Insert ("Apple","Worm", 2)
Will result in
WoApplerm

Say Insert ("Apple","Worm",7)
Will result in
Worm Apple

(There are three spaces between "Worm" and "Apple™).

Page [67]

Purpose:

Type:

Syntax:

Usage:

Example:

Interpret

To make Rexx process an expression as an instruction; that is, execute
instructions that have been built dynamically.

Rexx Instruction

INTERPRET expressionl expression2 ...

This is one of those highly esoteric Rexx functions. | have never had a need for
this instruction (which is not to say a person never will).

1 Instr = "Say"
2 Var = "Hello World"
3 Instr Var
4 Interpret Instr Var
Line 1 is simply setting the variable Instr to the character string "Say".
Line 2 is simply setting the variable var to the character string "Hello World".
Line 3 is being passed to TSO by Rexx, and the result is as follows:
COMMAND SAY NOT FOUND

4 *-* Instr Var

+++ RC(-3) +++

Line 4 tells Rexx not to pass these commands on to TSO, as it did with line 3, but
to execute them instead. The result is:
HELLO WORLD

Page [68]

Purpose:

Type:

Syntax:

Usage:

Example:

Iterate

Pass through the remainder of the instructions in a "DO" loop without executing
them.

Rexx Intruction

IF expression THEN ITERATE
where expression is any valid Rexx expression.

This is used to "skip" the remainder of a Do group.

/* Testl - Example Rexx Program - Rexx EXEC */
Say "Please tell me your name"
Pull YourName
Do I =1 to length(Yourname)
If T = 1 then iterate
Say "The "I"th letter of your name is "I
End
The above example will print every letter of the name the user types in, except the

first.

See the documentation on Do for more detailed information.

Page [69]

Justify

Purpose: Justify a string to both margins.

Type:

Rexx Function

Syntax: NewString = JUSTIFY (string,length)

Usage:

where NewsString is the newly-created justified string; string is the character string
being justified, and length is the length of NewString.

A new string is created by justifying the old string to both margins, and adding
blanks between words.

If the specified length is less than the string, then the new string will be truncated
on the right. Note that this should be viewed only as a side-effect, and not used
purposely. Use the LEFT function instead when this is the desired effect.

If there is only one word in the string being justified, it will be justified on the
left.

Examples:

The following excerpt from a Rexx exec:

NewString = JUSTIFY('Hello, world! I am terrific!',30)
Say NewString

will result in NewString containing the following:

Hello, world! I am terrific!

within a 30-character field.

The following excerpt from a Rexx exec:

NewString = JUSTIFY('Hello, world! I am terrific!',10)
Say NewString

will result in NewString containing the following:

Hello, wor

Notice that only 10 positions were kept.

Page [70]

Labels

Purpose: To provide a target for the "Signal" instruction.
Syntax: A label is immediately followed by a colon, with no intervening spaces.
Example:

Endit:

Exit

In the above example, "EndIt" is a label.

Page [71]

LastPos

Purpose: Return the position of the last occurrence of one string within another.
Type: Rexx Function
Syntax: Position = LASTPOS(find-string,target-string)

Where position is the position number of the last occurrence of find-string within
target-string.

Examples: The following Rexx exec:
XMasGreeting = "We wish you a Merry Christmas"
Jingle = XMasGreeting || XmasGreeting || ,
XMasGreeting

Jingle = Jingle || "And a Happy New Year!"
Position = LASTPOS ("Christmas",Jingle)

Say Position
will display "79".

XMasGreeting appears 3 times in Jingle (and is 29 chracters long). The last
occurrence of the word "Christmas™ appears in the 79th position of Jingle.

Page [72]

Purpose:
Type:
Syntax:

Usage:

Example:

Leave
Prematurely exit from a "DO" loop.
Rexx Instruction
(None)
“Do loops” can be written in a number of different ways. The example below

illustrates just one of those ways. In this particular example, the only graceful way
of exiting is by use of the Leave instruction.

/* Testl - Example Rexx Program - Rexx EXEC */
Do Forever
Say "Tell me your name, or enter 0 to quit"
Pull Answer

If Answer = "0" then Leave
Say "You told me that your name was" Answer"
End

The above Rexx exec will echo back whatever you type in, until you enter a zero.

Page [73]

Purpose:

Type:

Syntax:

Example:

See Also:

Left
Return the left "n" positions of a string.
Rexx Function

NewsString = LEFT (oldstring,quantity)
Where NewsString is the leftmost quantityth positions of oldstring

In the following code,
First8 = LEFT ("ABCDEFGHIJKLMN", 8)

First8 will contain "ABCDEFGH"

Right

Page [74]

Length

Purpose: Return the length of a literal, string, or string variable

Type: Rexx Function

Syntax: Answer = LENGTH(variable)

Usage: This is a Rexx built-in function that will return the length of a literal, string, or

string variable.

Example:
Answer = length("Merry Christmas and Happy New Year")
Say Answer
Would display
34

Page [75]

LineSize

Purpose: This is a Rexx built-in function that will return the terminal line width minus 1.
Type: Rexx Function

Syntax: Result = LineSize()

Usage: This is an inquiry-only function, and will usually return "79".

Page [76]

Purpose:

Type:

Syntax:

Usage:

ListDSI

Retrieve information about a TSO dataset.

TSO external function

LISTDSI(datasetname diropt)
or
LISTDSI(filename type diropt)

datasetname- the name of the data set about which you want information.

diropt- an option that indicates whether or not you want PDS directory

information returned.
DIRECTORY - return directory information. Note that this option must be
specified if you want the PDS-specific variables below to contain the
desired information (SYSADIrBIk, for example).
NODIRECTORY - Do not return directory information. This is the
default.

filename is the DD name if you pre-allocated the file

type Specify 'FILE' if the first operand is a DDName instead of a datasetname
This function will retrieve information about a dataset, and put it into variables.

The function is said to succeed if it can access the desired dataset information,
and fail if it cannot. The function in reality does not fail, however, because if the
dataset cannot be allocated, LISTDSI sets three variables that say why.

If the function succeeds, the return code is set to zero, and

certain variables are set:

SYSADIrBIk For a PDS, this value will contain the number of directory blocks
allocated. For a PDSE or sequential dataset, this value will be
blank.

SYSALLOC Total space allocation

SYSBLKSize Block size of the dataset

SYSBLKSTrk Blocks per track for the unit that this file is on

SYSCreate Date the dataset was initially created; julian
date format: yyyy/ddd

SYSDSName Fully-qualified datasetname

SYSDSorg DSORG of the dataset

SYSExDate Expiration date of dataset. O, if there is none.

SYSExtents Number of extents used

SYSKEYLEN Key length. 0 for non-keyed datasets

SYSLRECL Logical record length

Page [77]

SYSMembers Number of members in the PDS. This value
is blank for PDSE's.

SYSPassword The password assigned to the dataset, or
"NONE"

SYSPrimary Primary space allocation quantity

SYSRACFA Level of RACF protection. Possible values
are "NONE", "GENERIC", and
"DISCRETE"

SYSRECFM Record format of dataset

SYSRefDate Date the dataset was last referenced; julian
date format: yyyy/ddd

SYSSeconds Secondary space allocation

SYSTrksCyl The number of tracks per cylinder on the
volume on which this dataset resides
SYSUDIrBIk. For a PDS, this value will contain the
number of directory blocks used

SYSUnit Generic unit of the volume, such as "3390"

SYSUnits Units of allocation: "TRACK", "BLOCK",
"CYLINDER", etc

SYSUpdated Whether the dataset was ever updated:
"YES" or "NO"

SYSUSED Current space utilization: quantity of
"SYSUnits" above. "N/A" for PDSE's

SYSVolume The volume serial number on which this
dataset resides

If the LISTDSI function fails, the return code is set to 16, and certain other
variables are set:

SYSMSGLVL1 Primary, or generic error message

SYSMSGLVL2 Specific error message

SYSReason An error number

Page [78]

Examples: Consider the following Rexx Exec:

/* Testl - Example Rexx Program - Rexx EXEC */

RC = listdsi(junk.data)

If RC = 0 then do
Say "Allocation was successful."
Say "SYSADirBlk="SYSADirBlk
Say "SYSALLOC="SYSALLOC
Say "SYSBLKSIZE="SYSBLKSIZE
Say "SYSCreate="SYSCreate
Say "SYSDSorg="SYSDSOrg
Say "SYSDSName="SYSDSName
Say "SYSExtents="SYSExtents
Say "SYSExDate="SySExDate
Say "SYSKEYLEN="SYSKEYLEN
Say "SYSLRECL="SYSLRECL
Say "SYSMembers="SYSMembers
Say "SYSPassword="SYSPassword
Say "SYSPrimary="SYSPrimary
Say "SYSRefDate="SYSRefDate
Say "SYSRACFA="SYSRACFA
Say "SYSRECFM="SYSRECFM
Say "SYSSeconds="SYSSeconds
Say "SYSTrksCyl="SYSTrksCyl
Say "SYSUnit="SYSUnit
Say "SYSUnits="SYSUnits
Say "SYSUpdated="SYSUpdated
Say "SYSUSED="SYSUSED
Say "SYSVolume="SYSVolume

End
Else do
Say "Return code = " RC
Say "SYSReason="SYSReason
Say "SYSMSGLVL1="SYSMsgLvll
Say "SYSMSGLVL2="SYSMsgLvl2
End

Using the above exec, | performed a LISTDSI on an existing PDS, and the Rexx

exec reported as follows:
Allocation was successful.
SYSADirBlk=

SYSALLOC=15
SYSBLKSIZE=32720
SYSCreate=1997/104
SYSDSorg=PO
SYSDSName=DGRUND.WORK.DATA
SYSExtents=1

SYSExDate=0

SYSKEYLEN=0

SYSLRECL=80

SYSMembers=
SYSPassword=NONE
SYSPrimary=15
SYSRefDate=1997/107
SYSRACFA=GENERIC
SYSRECFM=FB

SYSSeconds=1

Page [79]

SYSTrksCyl=15
SYSUnit=3390
SYSUnits=TRACK
SYSUpdated=YES
SYSUSED=N/A
SYSVolume=PCF011

Using the same exec, | performed a LISTDSI on an non-existent PDS, and the
Rexx exec reported as follows:

Return code = 16
SYSReason=0005
SYSMSGLVL1=IKJ58400I LISTDSI FAILED. SEE REASON CODE IN VARIABLE SYSREASON.

SYSMSGLVL2=IKJ58405I DATA SET NOT CATALOGUED. THE LOCATE MACRO RETURN CODE IS
0008

Page [80]

Purpose:

Usage:

Literals

Literals exist so variables can represent an unchanging value.
Rexx supports literals of a number of different types.

Typically, a literal is one that is enclosed by either a set of quotation marks or
apostrophes.

"HELLO WORLD" and

'HELLO WORLD' represent the same character string.

Literals can be numeric, character, hexadecimal, and binary. "FOUR" is a
character literal; "4" is a numeric literal.

The reason | say "typically”, is because that is not always the case. (This is
probably one of my biggest complaints about Rexx. | feel that if it was more
stringent, it would be easier to figure out and explain.)

« A character literal doesn't have to be enclosed. If it isn't, it is changed to all
upper case.

« A character literal that is not enclosed can be converted to a variable by using it
on the left side in an assignment statement. (You will get a syntax error if you try
to assign a literal that is enclosed).

Consider this example. The following excerpt is from a Rexx Exec:

Say "Hello, World" /* Character string */
Say Hello World /* Two literals */
World = "Dave" /* Make "World" a variable */

Say Hello World

will yield the following results:
Hello, World

HELLO WORLD

HELLO Dave

A good rule of thumb to follow is always enclose literals. That way, if a character
string appears in your output, you can bet it's an (uninitialized) unused variable.

Page [81]

Logical Operators
REXX supports the following logical (Boolean) comparison operators:

& AND -returns a 1 (true) if both comparisons are true, and a 0 (false) otherwise - performs a
logical AND operation

| OR -returns a1 (true) if at least one comparison of several is true, and a O (false) otherwise -
performs a logical or operation

&& EXCLUSIVE OR - returns a 1 (true) if ONLY one of a group of comparisons is true, and a
0 (false) otherwise - performs a logical exclusive OR function

\ NOT - returns the reverse logical value for an expression - returns false if expression resolves
to true, and true if the rexpression resolves to false

Page [82]

Math

Rexx performs math whenever it can recognize arithmetic operators. The valid Rexx
operators are as follows:

Operator | Function

+ Add

- Subtract

* Multiply

/ Divide

% integer divide

/l remainder of division

*x Exponentiation

@) group items

Usage
The primary operations (+, -, *, /) are obvious, so not much further discussion is needed

here.
%- Integer
Divide Any remainder is dropped

/I- Remainder
of Division

Yields the remainder in a division expression.

The following excerpt from a Rexx exec:
"EXECIO" 1 "DiskW SYsSuUT2"
OpCount = OpCount + 1
If OpCount // 1000 = 0 then
Say OpCount "records written so far..."
will print a message line for every 1000th record written. This, of course, is useful

in a long-running program.

**- Exponentation

0

Operations within expressions to make them take precedence over normal
precedence.

Page [83]

Function:

Type:
Syntax:

Usage:

Example:

Purpose:
Type:
Syntax:

Usage:

Example:

Max
Return the highest of a series of numbers.
Rexx Function
HighNum = MAX(hum1, num2...)

A maximum of 20 numbers can be provided.

Say Max(1,3,5,17,9,6,4)
will yield 17" (without the quotation marks)

Min
Return the lowest of a series of numbers.
Rexx Function
LowNum = MIN(num1, numz2...)

A maximum of 20 numbers can be provided.

Say Min(8,3,5,17,9,6,4)
will yield "3" (without the quotation marks)

Page [84]

Purpose:

Type:

Syntax:

Usage:

Example 1:

Example 2:

Msg

Change or inquire as to the current TSO "MSG" setting.
TSO external function

Setting = MSG(on/off)

where setting is the current setting, before it is changed by what is in the
parentheses;

on/off is either "ON", "OFF", or nothing.

The TSO "MSG" setting indicates whether TSO messages are printed during the
execution of a Rexx exec or not. Specify the command with "ON" to turn
message displays on, "OFF" to turn message displays off, and a null parameter
(just the parentheses with nothing in them) to display the current setting.

In the following example,
1 Say Msg()

2 MSetting = Msg (Off)
3 Say MSetting

4 Say Msg ()

1 will display the current TSO message setting, either "ON" or "OFF"

2 will capture the current TSO MSG setting into the variable MSetting, and then
set the setting to "OFF", regardless of what it was

3 will display the variable MSetting

4 will display the new current setting, which will be "OFF"

In the following example,

Say Msg ()

Say "About to allocate the first time..."
"Allocate FI (dummy) DA (junk2.data) shr"
Junk = Msg (Off)

Say "About to allocate the second time..."
6 "Allocate FI (dummy) DA (junk2.data) shr"

1 will display the current TSO message setting, either "ON" or "OFF"

2 tells the user that we are about to issue a TSO command

3 allocates the file, if possible

4 turns the MSG setting off

5 tells the user again that we are about to issue a TSO command

6 allocates the file again, if possible

The dataset junk2.data does not exist, so each attempt at allocating it will fail.
Line 3 above will issue a message because the TSO MSG setting is on. Line 6
above would have issued a TSO message, but the TSO MSG setting was off.

g w N

Page [85]

NewStack

Purpose: Establish a new TSO stack

Type: TSO command

Syntax: NewsStack

Usage: To tell Rexx that from here on, all stack operations are to be conducted on a

newly-established TSO stack, instead of the one that existed when the instruction
started. The "old" stack is left alone and unharmed by further operation, until a
DelStack is issued to discard this newly-established stack.

See also: DelStack

Page [86]

NOP

Purpose: No operation

Type: Rexx instruction

Syntax: NOP

Usage: Allow you to use an instruction that performs no action in a place where an

instruction (of any kind) is required.

Example: The following example is coded this way to avoid complicated negative logic.
IfA=1 1] A =2 then
Nop /* do nothing */
Else

Say "answer was incorrect"

Page [87]

Purpose:

Type:

Syntax:

Purpose:

Syntax:

Example:

Numeric

Set certain rules for Rexx's handling of numbers. It controls the waya Rexx exec
carries out arithmetic operations.

Rexx instruction

Numeric function
Where function is either Digits, Form, or Fuzz.

Digits controls the precision to which arithmetic operations are evaluated.

Form directs which form of exponential notation Rexx uses of the result of
arithmetic operations

Fuzz controls how many digits, at full precision, are ignored during a numeric
comparison operation.

In many cases, these three functions work together to produce the desired results.
Numeric Digits
Controls the precision to which arithmetic operations are evaluated.

Numeric Digits NoOfDigits

NoOfDigits - Defaults to 9, and must be larger than the current NUMERIC
FUZZ setting. There is no practical limit to the value for DIGITS,
but keep in mind that higher values result in added processing
time.

The following Rexx exec snippet:

Numeric Digits 5 ; Say 1234.56 * 1
Numeric Digits 4 ; Say 1234.56 * 1
Numeric Digits 3 ; Say 1234.56 * 1
Numeric Digits 2 ; Say 1234.56 * 1
Numeric Digits 1 ; Say 1234.56 * 1

Will produce:
1234.6

1235
1.23E+3
1.2E+3

1E+3

Page [88]

Numeric Form

Purpose: Directs which form of exponential notation Rexx uses for the result of arithmetic
operations
Syntax: Numeric Form mode

Where mode is either SCIENTIFIC or ENGINEERING

SCIENTIFIC notation adjusts the power of ten so there is a single non-zero digit
to the left of the decimal point.

ENGINEERING notation causes the power of ten to be expressed as a multiple of
3.

Example: The following Rexx exec snippet:
Numeric Digits 2
Numeric Form Scientific
Say 123.45* 1
Numeric Form Engineering
Say 123.45* 1

Will produce:

1.2E+2
120

Page [89]

Purpose:

Syntax:

Usage:

Example 1:

Example 2:

Numeric Fuzz

Controls how many (low-order) digits, at full precision, are ignored during a
numeric comparison operation. The exact way this function works is actually
slightly complicated.

Numeric Fuzz Tolgnore
Tolgnore - Defaults to 0. It must be smaller than the current setting of
NUMERIC DIGITS.

During the numeric comparison, the numbers are subtracted under a precision of
DIGITS minus FUZZ digits, and the difference is then compared to 0.

The following Rexx exec shippet:
Valuel = 133456
Value2 = 123457

Numeric Digits 6

Numeric Fuzz 5

If Valuel = Value2 then Say "They are equal”
Else Say "They are NOT equal™

Will produce:

They are equal

Digits (6) minus Fuzz (5) equals 1. That is the number of digits from the left that
are compared. Since the first digit in each of Valuel and Value2 are identical, this
comparison is true.

The following Rexx exec snippet:
Valuel = 133456
Value2 = 123457

Numeric Digits 6

Numeric Fuzz 5

If Valuel = Value2 then Say "They are equal”
Else Say "They are NOT equal”

Numeric Fuzz 4
If Valuel = Value2 then Say "They are equal”
Else Say "They are NOT equal”

Will produce:

They are equal

Digits (6) minus Fuzz (4) equals 2. That is the number of digits from the left that
are compared. The first two digits of Valuel (13) are compared to the first two
digits of Value2 (12). This comparison is obviously false.

Page [90]

Page [91]

Operators

Arithmetic Operators- See the subject entitled "Math"
Comparison Operators- See the subject entitled "Compare™
Logical Operators- See the subject entitled "Logical Operators"
Concatenation Operators- See the subject entitled "Concatenation™

REXX Operator Precedence
The following list shows order of precedence for ALL REXX operators:

1) Expressions in parenthesis are evaluated first

2) prefix operators ==> -, +\

3) exponentiation ==> **

4) Multiplication and division in this order ==> * / %,//

5) Addition and Subtraction ==> + and -

6) concatenation ==> || or blank

7) comparison operators ==> ==,=\==\=,>,<,><>= <= \<,\>
8) logical AND ==> &

9) logical OR and EXCLUSIVE OR ==> |, &&

Page [92]

Purpose:

Type:

Syntax:

Usage:

Example:

OutTrap
To turn on or off the capturing of TSO output.
TSO external function

ReturnCode = OUTTRAP(stem.,max)

ReturnCode = OUTTRAP('ON'/OFF")

where stem. is the name of the array into which the TSO output will be built, and
max is the maximum number of records that will be written. Note that stem must
end in a period. ReturnCode will be O if the function succeeds.

OUTTRAP("ON"): Turn on capturing of TSO messages and output, simply
"swallow" it. Nothing wil be displayed at the terminal.

OUTTRAP("OFF"): Stop the capture of TSO messages and output, in which case
they will start being displayed at the terminal again.

OUTTRAP(stem.,max): Turn on capturing of TSO messages and output, and
write it all to an array named stem. max is the maximum number of records that
will be written. Specify "*" to process all records, although that is the default.

In the following example, we are trying to write all of the member names of a
PDS to an array. As a byproduct of the TSO command that we are using, some

unwanted information is written to the array as well.
Dummy = OutTrap ("output line.","*")
"LISTd work.data m"
NumLines = OutPut Line.0
Say NumLines "lines were created"
Dummy = OutTrap ("OFF")
Do I = 0 to NumLines
Say "Output Line."I"="Output Line.I
End
After execution of this exec, the array called Output_Line looks like this:
Output Line.0=8
Output Line.1=DGRUND.WORK.DATA
Output Line.2=--RECFM-LRECL-BLKSIZE-DSORG
Output Line.3= FB 80 32720 PO
Output Line.4=--VOLUMES--
Output Line.5= PCFO011
Output Line.6=--MEMBERS--
Output Line.7= PROGO1
Output Line.8= PROGO02

There are only two members in the PDS, but the array contains all of the other
output from the ListDS command. It's really simply to process around it, though,

like this:
Do I = 7 to Output Line.O

Page [93]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Example 2:

Overlay
Move characters over (on top of) other characters.
Rexx Function
NewsString = OVERLAY (source,object,position)

This function replaces the characters in object with the characters in source,
starting at position. If object is less than position, it is padded with blanks.

This is what happens when you use the command the wrong way:
NewString = OVERLAY ("ABCDEFGHIJK", 'X',4)

Say Newstring

NewsString will contain:

X ABCDEFGHIJK

The following example decides, based on the day of the week, whose turn it is to

make the coffee.

Say "Today is " Date (W)

CoffeeMaker = "Undecided" /* default */

If Date (W) = "Monday" then CoffeeMaker = "Glenda"

If Date (W) = "Tuesday" then CoffeeMaker = "Alice"

If Date (W) = "Wednesday" then CoffeeMaker = "Thom"
If Date (W) = "Thursday" then CoffeeMaker = ,

"Brucey"

If Date(W) = "Friday" then CoffeeMaker = "Chuck"
Message = "The person in charge of making coffee

-> today is"

Position = length (Message) + 2
Say OVERLAY (Coffeemaker,Message,Position)

Page [94]

Purpose:

Type:

Syntax:

Note:

Upper:

Action:

ARG:

VAR:

Parse

Take data from one of several origins, optionally break it up, and then drop it into
variables.

Rexx Instruction

PARSE [UPPER] origin varname delimiter varname delimiter...

UPPER- Converts the data to upper case. This is the default.
origin- Places where REXX can get the data from:
ARG- Command line
VAR- A variable
PULL- The TSO stack
SOURCE- TSO info on how the program was executed
VALUE- Literal

EXTERNAL- Terminal

VERSION- Version of Rexx interpreter
varname- One or more variables
delimiter- Delimiters for parsing the origin data

The words "Parse Upper" are optional. When Rexx sees any of these origins, it
assumes "Parse Upper".

"Upper" is optional, but it is the default. To not take the default, simply specify
"Parse" without the word "Upper".

Rexx will move variables one at a time from the implied origin into the variables
specified after the origin keyword.

If there are more origin parameters than variables, Rexx will put all of the
remaining parameters into the last variable. The last variable can be a period, in
which case extra origin parameters will simply be discarded. | don't recommend
this, however. Letting these drop into a variable would not hurt. You can always
choose to ignore them, but the program will require no modification here if you
later choose to look at these parameters.

If there are more variables than there are origin parameters, the variables are set to
spaces.

Delimiters break the input up and cause it to be processed separately, under the
guidelines specified above.

Take input from the command line. This is information that the user supplied to
the exec when entering the command. See examples EX01 and EX02 below.

Take input from a variable. See example EX03 below.

Page [95]

PULL:

SOURCE:

VALUE:

A period is used as a placeholder. If you don’t wish to use all of the arguments
that are supplied to an EXEC, you can specify a period instead of a variable name,
and that argument will be ignored.

Take input from the TSO stack. Use PULL to prompt the user for information.
(Whatever the user types in is moved into the TSO stack.) See example EX04
below.

Take input from information that the system (TSO) maintains about your REXX
program. It returns nine values. They are:

1. Operating System. In this case, it would be TSO.

2. How the program (Rexx exec) was called. It will be either of COMMAND,
SUBROUTINE, or FUNCTION.

3. Name of the EXEC

4. DDName of command library; either SYSEXEC or SYSPROC

5. Datasetname containing the EXEC. It will be *?" if the command was invoked
implicitly.

6. The name that the command was invoked by. It will be "?" if the command was
invoked implicitly.

7. The initial address environment; generally TSO, MVS, or ISPEXEC

8. Environment: TSO, MVS, or ISPF

9. Reserved. Will be '?'

See example EXO05 below.

Take input from a literal. This function can be used to parse things like the current
time. See example EX06 below.

EXTERNAL: Take input from the terminal.

varname:

Delimiters:

Literal

Delimiters:

Variable
Delimiters:

One or more variable names
Delimiters to determine where origin data is divided. These delimiters can be
literals, variables, or column numbers.

Break input up at a specific character. See example EX03 below.

Break input up at a specific variable

Column number

Delimiters:

Examples:

Break input up under the control of column numbers.

| used the origins that | did for the sake of clear explanation only. The following
examples apply to all of the origins.

Page [96]

In the following Rexx program,

/* EX01 - REXX Example Program */

Parse Upper Arg Varl Var2 Var3 Var4d Varb
Say Varl ; Say Var2 ; Say Var3 ; Say Var4

If the command line read
Ex0l a b ¢ d e

Rexx would display

HoOQw»

If the command line read

Testl a b cde £f gh
Rexx would display

A

B

C

D

E F GH

If the command line read
Testl a b
Rexx would display
A
B

(with three blank lines following)

If the command line read

Testl "My name is Dave"
Rexx would display

"MY

NAME

IS

DAVE"

(blank line)

In the following Rexx program,

/* Ex02 - REXX Test Program */

Parse Arg Varl Var2 Var3 Var4d Varb

Say Varl ; Say Var2 ; Say Var3 ; Say Var4

If the command line read
EX02 a b ¢ d e

Rexx would display

0O QoW

Page [97]

I

’

Say Varb

Say Varb

In the following Rexx program,
/* EX03 - REXX Test Program */
Parse upper arg datasetname

Parse var datasetname PDSName " (" MemName ")" junk
Say "The command line parameter was " DatasetName
Say "The PDSName is " PDSName

Say "The MemberName is " MemName

Say "The junk variable is " junk

If the command line read
EX03 user.session.jcl (copyfile)

Rexx would display

The command line parameter was USER.SESSION.JCL (COPYFILE)
The PDSName is USER.SESSION.JCL

The MemberName is COPYFILE

In the following Rexx program,
/* EX04 - REXX Example Program */
Newstack
Say "Please tell me your first and last name"
Pull FirstName LastName
Say "You told me your first name was" FirstName
Say "You told me your last name was" LastName
DelStack
If the command line read

EX04
Rexx would display

Please tell me your first and last name
And if you replied

George Washington
Rexx would display

You told me your first name was GEORGE
You told me your last name was WASHINGTON

In the following Rexx program,

/* EX05 - REXX Example Program */
Parse Upper Source Stuff

Say Stuff

Rexx would display something like
TSO COMMAND EX05 SYSEXEC ? ? TSO ISPF ?

In the following Rexx program,

/* EX06 - REXX Example Program */

Parse Value Time () with Hrs ':' Mins ':' Secs
Say Hrs; Say Mins; Say Secs

If the time of day was 10:28:07, Rexx would display
10
28
07

Page [98]

/* EX07 - REXX Example Program */
Parse Version Me

Say Me

would display something like the following:
REXX370 VERS 3.48 01 May 1992

Page [99]

Pos

Purpose: This is a Rexx built-in function that will allow you to determine if a character is
present in a string or variable, by returning its position in the string.

Type: Rexx Function
Syntax: Position = POS(source,object)

where position is the position of source within object. Position will be zero if
source does not apear in object.

Note: Index differs from Pos in that object and source are in opposite sequence in the
command.
Example: We will use the following Rexx exec for our examples:

/* Testl - Check for Coffeemakers - REXX exec */
Arg Person
CoffeeMakers = "GLENDA ALICE THOM BRUCEY CHUCK
DAVE "
If Pos(Person,Coffeemakers) > 0 then
say Person "is indeed one of our CoffeeMakers"
Else
say Person "does not drink coffee with us"

The following command:
Testl Alice

will yield the following message:
ALICE is indeed one of our CoffeeMakers

because POS contains 8

The following command:
Testl Randy

will yield the following message:
RANDY does not drink coffee with us

because POS contains 0

The following command:
Testl Al

will yield the following message:
AL is indeed one of our CoffeeMakers

This is an error, not in the Rexx exec, but in our usage of it. We are checking only

for the existence of the character string, and not whether that charcter string is a
whole word.

Page [100]

Procedure

Purpose: Establish that the current block of code is a Procedure, and thereby hide all local
variables

Type: Rexx Instruction

Syntax: PROCEDURE

Usage: This statement is needed only when you wish to hide the variables that appear in

the local block of code. You can then "unhide" some of them by using the
Expose function.

Variables defined outside the procedure are not visible from within the procedure.
They need to be passed to the procedure.

Conversely, variables defined inside a procedure are not visible from outside the
procedure, unless they are “exposed”.

This is an example Rexx Exec that demonstrates some variable usage and handling.

/* Define the same variable outside and inside a procedure */

/* The one inside the procedure is unique. */
Procvarl = "This is a global variable"

Say "Before call to Procl. ProcVarl=" ProcVarl

Call Procl

Say "After call to Procl. ProcVarl=" ProcVarl

Say

/* Define the same variable outside and inside a procedure, */

/* and expose that variable from within the procedure. */
/* The one inside the procedure takes precedence. */
Procvar2 = "This is a global variable"

Say "Before call to Proc2. ProcVar2=" ProcVar?

Call Proc?2

Say "After call to Proc2. ProcVar2=" ProcVar?

Say

/* Define a variable outside the procedure, and try to use */

/* it inside the procedure. */
/* The one inside the procedure does not see the one */
/* outside the procedure. */

Procvar3 = "This is a global variable"

Say "Before call to Proc3. ProcVar3=" ProcVar3

Call Proc3

Say "After call to Proc2. ProcVar3=" ProcVar3

Say

Page [101]

Exit

Procl: procedure

ProcVarl = "This is a local wvariable"
Say "I am in Procl. Procvarl=" Procvarl
Return O
Proc2: procedure expose ProcVar?2
ProcVar2 = "This is a local variable"
Say "I am in Proc2. Procvar2=" Procvar?2
Return O

Page [102]

Proc3: procedure

Say "I am in
Return O

Proc3. Procvar3=" Procvar3

The output from execution of this exec:

Before call to
I am in Procl.
After call to

Before call to
I am in Proc?2.

After call to

Before call to

Procl. ProcVarl= This is a global variable
Procvarl= This is a local variable

Procl. ProcVarl= This is a global variable

Proc2. ProcVar2= This is a global variable
Procvar2= This is a local variable

Proc2. ProcVar2= This is a local variable
Proc3. ProcVar33= This is a global variable

I am in Proc3. Procvar3= PROCVAR3

After call to

Proc3. ProcVar3= This is a global variable

Page [103]

Purpose:

Type:

Syntax:

Usage:

Example:

Prompt

Change the setting of, or inquire as to the current setting of the TSO "Prompt"
setting.

TSO external function

Answer = PROMPT("ON"['"OFF"|)

Rexx PROMPT functions only if the TSO PROFILE PROMPT setting is "ON"
)as opposed to "PROFILE NOPROMPT").

The "ON" parameter will cause Rexx to allow TSO commands to prompt for
necessary information.

The "OFF" parameter will force TSO commands to bypass the normal step of
stopping and asking for missing information.

In both of the above cases, the function will first return the current setting.
The empty parameter will simply return the current setting.

The following exec is actually the same process run twice; once after turning the

TSO Profile Prompt setting ON, and once turning it off. During each process, we
will turn the Rexx Prompt setting on, issue the TSO "Delete” command, and then
turn the Rexx Prompt setting off, and then issue the same TSO delete command.

If you get confused, just remember that there is a difference bewteen the TSO

Prompt command and the Rexx Prompt function.
"Profile Prompt"

Say "Here is the demo with the TSO prompt ON"
Dummy = prompt ("ON")

Say "Rexx Prompt is " prompt ()

"Newstack"

Delete

"Delstack"

Dummy = prompt ("OFF")

Say "Rexx Prompt is " prompt ()
"Newstack"

Delete

"Delstack"

"Profile NoPrompt"

Say "Here is the demo with the TSO prompt OFE"
Dummy = prompt ("ON")

Say "Rexx Prompt is " prompt ()

"Newstack"

Delete

"Delstack"

Page [104]

Dummy = prompt ("OFF")

Say "Rexx Prompt is " prompt ()
"Newstack"

Delete

"Delstack"

This exec will display:
Here is the demo with the TSO prompt ON
Rexx Prompt is ON
ENTER ENTRY NAME -

At which point, the command waits for a datasetname to be entered. | entered
IIAII.

Continuing the display...

ERROR QUALIFYING GRUND.A

** DEFAULT SERVICE ROUTINE ERROR CODE 20, LOCATE
ERROR CODE 8

LASTCC=8

Rexx Prompt is OFF

MISSING ENTRY NAME+

LASTCC=12

MISSING ENTRYNAME TO BE DELETED, PASSWORD OPTIONAL

Here is the demo with the TSO prompt OFF

Rexx Prompt is ON

MISSING ENTRY NAME+

LASTCC=12

MISSING ENTRYNAME TO BE DELETED, PASSWORD OPTIONAL

Rexx Prompt is OFF

MISSING ENTRY NAME+

LASTCC=12

MISSING ENTRYNAME TO BE DELETED, PASSWORD OPTIONAL

In the above exec, | tried the following 4 scenarios:

TSO REXX Prompting
PROMPT PROMPT Occurred?
ON ON YES

ON OFF NO

OFF ON NO

OFF OFF NO

In each case where prompting did not occur, TSO went along its merry way,
trying to delete a dataset whose name wasn't supplied. Naturally, it failed.

Page [105]

Pull

Purpose: Get input from TSO

Type: Rexx Instruction

Syntax: Pull variablel variable2...

Usage: This command will first look at the TSO stack. If the TSO stack is empty, the

command will prompt the user.

Example:

NewStack

Push "Hello #1"

Pull Answerl

Say "I just learned" Answerl

Pull Answer?2

6 Say "I just learned" Answer?2

In this example,

1 Establishes a new stack

2 Puts the phrase "Hello #1" onto the stack

3 Gets (and removes) that phrase from the stack
4 Displays I just learned HELLO #1

5 Prompts the user for more input, since the stack is now empty
6 Displays whatever the user just typed in.

O b wWwN -

See Parse and Stack for documentation on this function.

Page [106]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Example 2:

Push
Move data to the TSO stack.
Rexx Instruction
PUSH variablel variable2 ...
Put things in the "input queue”. This instruction works in LIFO format: last in,
first out. It operates like a pile of plates in a diner. The plates put on top push the

others down, and the first ones pulled off are the last ones put on.
Queue does the same thing as Push, but in FIFO format.

1 NewStack

2 Say "I have "queued()" lines on the stack"
3 Push "A" "B" "C"

4 Say "I have "queued()" lines on the stack"
5 Pull varl

6 Say "I pulled "Varl" off of the stack"

7 Say "I have "queued()" lines on the stack"

Line 1 established a brand new TSO stack to play with.

Line 2 tells us how many lines are on the stack. This should be "zero", since we
just started a new stack.

Line 3 pushed three variables (one line) onto the stack.

Line 4 again tells us how many lines are on the stack. This should be "one".
Lne 5 pulls those three variables off the stack, so now the stack again contains
zero lines.

Line 6 tells us the variables that the exec pulled off the stack

Line 7 again tells us how many lines are on the stack. This should be "zero".

Newstack

Say "I have "queued()" lines on the stack"
Push "A" "B" "C"

Push "D" "E" "F"

Say "I have "queued()" lines on the stack"

Pull varl

Say "I have "queued()" lines on the stack"
Say "I pulled "Varl" off of the stack"
Pull varl

Say "I pulled "Varl" off of the stack"”

Say "I have "queued()" lines on the stack"

In this example, "A B C" is pushed onto the stack. Then "D E F" are pushed onto
the stack. Since Push is a LIFO instruction, the program will first pull "D E F" off
the stack, then "A B C".

Page [107]

QStack

Purpose: Determine the number of data stacks currently in existence
Type: TSO Command
Syntax: QStack
Usage: To see if the exec (or subroutines) had created any data stacks
See also: NewsStack, DelStack
Example: The following Rexx exec snippet:
"QStack" /* Returnsa 1 in RC */
saverc = RC /* Save the number of stacks */
Say "The number of data stacks is " saverc
"NewStack" /* Create a new data stack */
"NewStack" /* Create a new data stack */
"QStack" /* Returns a 3 in RC */
saverc = RC [* Save the number of stacks */

Say "The number of data stacks is " saverc
Will display:

The number of data stacks is 1
The number of data stacks is 3

Page [108]

Queue

Purpose: Move data to the TSO stack.

Type: Rexx Instruction

Syntax: Queue variablel variable2 ...

Usage: fPut things in the "input queue™. This instruction works in FIFO format: First in,
irst out.

Push does the same thing as Queue, but in LIFO format.

Example 1:
1 NewStack
2 Say "I have "queued()" lines on the stack"
3 Queue "A" "B" "C"
4 Say "I have "queued()" lines on the stack"
5 Pull varl
6 Say "I pulled "Varl" off of the stack”
7 Say "I have "queued()" lines on the stack"

Line 1 established a brand new TSO stack to play with.

Line 2 tells us how many lines are on the stack. This should be "zero", since we
just started a new stack.

Line 3 pushed three variables (one line) onto the stack.

Line 4 again tells us how many lines are on the stack. This should be "one".
Lne 5 pulls those three variables off the stack, so now the stack again contains
zero lines.

Line 6 tells us the variables that the exec pulled off the stack

Line 7 again tells us how many lines are on the stack. This should be "zero™.

Page [109]

Queued

Purpose: This is a Rexx built-in function that will return the number of lines that are
currently available in the TSO stack.

Type: Rexx Function
Syntax: NumOfLines = Queued()
Example:

If Queued() > 0 then DelStack

In the above example, if there are any lines on the TSO stack, we will delete
them.

Page [110]

Purpose:
Syntax:

Usage:

Quotation Marks/Apostrophes
To enclose a literal (character string).
nn Or L]

Literals are enclosed by a matched set of either apostrophes or quotation marks.
They can be used interchangeably, but must be used in matched pairs.

A character string containing apostrophes can be enclosed by quotation marks, or
vice-versa.

The Rexx instruction: Yields:
Say "Hello, it's me!" Hello, it's me!
Say 'Hello, it"s me!' Hello, it"s me!

(Although the punctuation is incorrect)

A character string containing apostrophes can be enclosed by apostrophes only if
each of the contained apostrophes is represented by two.

The Rexx instruction: Yields:
Say 'Hello, it's me!' Error: unmatched quote
Say 'Hello, it''s me!' Hello, it's me!

The first example (enclosing apostrophes in quotation marks) is cleaner, and is the
recommended method.

Enclosing an expression causes Rexx to bypass the command, and pass it right
through to the environment; in our case, TSO.

Example:

"Say 'Hello, World' "

Would display
COMMAND SAY NOT FOUND
8 *-* "Say 'Hello' "
+++ RC(-3) +++

Page [111]

Random

Purpose: Return a random number
Type: Rexx Function
Syntax: Pick = RANDOM(min,max,seed)

where pick is the number selected; min and max is the range of numbers,
inclusive, from which the function can pick; and seed is the random number seed,;

it is optional.

Usage: This function will pick a number that is commonly referred to as pseudo-random.
Specifying the same seed will produce the same random number.
Random

Example: This is an example of an Exec that thinks it can guess what the current

temperature is.
MoNum = substr (Date(U),1,2)
If Monum = 1 then Do; Low

0; High = 55; end

If Monum = then Do; Low = 0; High = 60; end
If Monum = then Do; Low = 15; High = 65; end
If Monum = then Do; Low = 35; High = 80; end
If Monum then Do; Low = 45; High = 85; end

If Monum
If Monum =

then Do; Low = 50; High = 90; end
then Do; Low = 55; High = 95; end
If Monum then Do; Low = 55; High = 95; end
If Monum 9 then Do; Low = 50; High = 90; end
If Monum = 10 then Do; Low = 30; High = 85; end
If Monum = 11 then Do; Low = 10; High = 75; end
If Monum = 12 then Do; Low = O0; High = 60; end

Il
W ~Joy U WN

Temp = Random (Low, High)
Say "The temperature right now is " Temp

Page [112]

Purpose:
Usage:

Example 1:

RC

Special variable set by TSO commands

This variable can be used to test the success/failure of a TSO command.

Say "This is a typical Rexx instruction"
Say "Return Code = "RC
Junk

Say "Return Code "RC
Say "Hello, World"

Say "Return Code = "RC
Say A =B + C

Say "Return Code

O J o Ul Wb

" RC

Line 1 will simply display a message.
Line 2 wil display Return Code = RC. Line 1 was a Rexx instruction, and did not
set RC. Since RC was never set (in this exec), it is stil undefined.
Line 3 is not a Rexx instruction, so it is passed on to TSO, and the following
displays:
COMMAND JUNK NOT FOUND
3 *-=* Junk

+++ RC(-3) +++
Line 4 displays: Return Code = -3
Lines 5-6 display:
Hello, World
Return Code = -3
Return code was set to -3 before, and is unchanged because these are both valid
Rexx instructions.
Line 7 displays:
7 +++ Say A =B + C
Error running T1l, line 7: Bad arithmetic conversion

The Rexx exec stops here, so line 8 never executes.

Page [113]

Result

Purpose: Special TSO variable set by the Return instruction

Usage: This variable is set by the Return instruction after a subroutine is called. If the
subroutine returns an expression, Result will contain that expression. If not,
Result is dropped (becomes uninitialized).

Example: The following exec:
Call Procl
Say "Result is " Result
Call Proc2
Say "Result is " Result
Exit
Procl:
Return "abc"
Proc2:
Return

Will display:

Result is abc
Result is RESULT

Page [114]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Return
Go back to a caller
Rexx Instruction
RETURN variable
Use this command to return to a calling program, and optionally pass a variable.

The variable that is passed back will be moved into the "RESULT" variable for
use by the caller.

Call Multiply 2 3
Say "The answer is "Result

Exit
Multiply:
Arg Factorl factor2
Product = Factorl * Factor2

Return Product

The above example illustrates the use of the Return function and the Result
variable. You could have specified Product instead of Result, but that would have
violated good programming techniques, and depending how the subroutine is
coded, may not give you the desired results. The illustrated way always will.

Page [115]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Reverse
Reverses the order of the characters of a string.
Rexx Function
Result = REVERSE(string)
Use this function to turn a string around.

The following Rexx EXEC:

Message = "Happy birthday to you"

NewMsg = REVERSE (Message)

Say "The original message was " Message

Say "The new message is " NewMsg

Will display:

The original message was Happy birthday to you
The new message 1is uoy ot yadhtrib yppaH

The following Rexx EXEC:

Message = "Able was I ere I saw Elba"
NewMsg = REVERSE (Message)

Say "The original message was " Message

Say "The new message is " NewMsg

Will display:

The original message was Able was I ere I saw Elba
The new message is ablE was I ere I saw elbA

| used a palindrome here to illustrate a point: the case of the letters will remain the
same as they were.

Page [116]

Purpose:

Type:

Syntax:

Example:

See Also:

Right
Return the right "n" positions of a string.
Rexx Function

NewsString = RIGHT (oldstring,quantity)
Where NewsString is the rightmost quantityth positions of oldstring

In the following code,
First8 = RIGHT ("ABCDEFGHIJKLMN", 8)

First8 will contain "GHIJKLMN"

Left

Page [117]

Say

Purpose: Display strings, literals, and numeric values

Type: Rexx Instruction

Syntax: Say anything

Usage: This command is probably the most commonly-used Rexx command. It is used to

display information to the user at the terminal. You can mix literals and variables
into the object that you are displaying.

Example:

Say "Hello, World. My name is Computer. What is your name?"

Pull YourName

Say "So, you say your name is" YourName"."

Say "How old are you, "YourName"?"

Pull YourAge

Say "Hmmmm..." YourAge", huh? That's pretty good. I used to be",
YourAge "once, too!"

Say "Goodbye, "YourName", and have another wonderful "YourAge" years!"

The above example first asks you for your name, and then your age.

Page [118]

Select

Purpose: Rexx's implementation of the structured programming CASE construct.
Type: Rexx Instruction
Syntax: SELECT

WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction
OTHERWISE instruction

END
Example:

SELECT
WHEN WeekDay = 1 THEN DOWWord = "Sunday"
WHEN WeekDay = 2 THEN DOWWord = "Monday"
. . /* The rest of the days of the week */
OTHERWISE DOWWord = "Invalid"

END

Page [119]

Purpose:
Syntax:

Usage:

Example 1:

Semi-Colon
To stack instructions on a line
instruction ; instruction ; instruction

Use this command to place more than one instruction on a line, especially when
they are "short" instructions. Stacking instructions on a line can compact the body
of a routine so you can see more of it at one time. Sometimes, this can be a help
instead of a deterrent.

(Instruction not stacked)
Temperature = Random(1,100)
If temperature < 20 then do

Weather = "Brutal"
Like = "heck no!"
End
If temperature > 19 & temperature < 32 then do
Weather = "Cold"
Like = "no"
End
If temperature > 31 & temperature < 50 then do
Weather = "Nippy"
Like = "not really"
End
If temperature > 49 & temperature < 71 then do
Weather = "so-so"
Like = "so-so"
End
If temperature > 70 & temperature < 82 then do
Weather = "warm"
Like = "nice"
End
If temperature > 81 then do
Weather = "hot"
Like = "yes!"
End

Say "The temperature now is "temperature,
" and the weather is "Weather"."
Say "Do I like it? "Like
In the above example, there are two short instructions in every If-then-do group.
They each take two lines.

Page [120]

Example 2:

(Instructions stacked)
Temperature = Random(1l,100)
If temperature < 20 then do

Weather = "Brutal"; Like = "heck no!"

End

If temperature > 19 & temperature < 32 then do
Weather = "Cold"; Like = "no"

End

If temperature > 31 & temperature < 50 then do
Weather = "Nippy"; Like = "not really"

End

If temperature > 49 & temperature < 71 then do
Weather = "so-so"; Like = "so-so"

End

If temperature > 70 & temperature < 82 then do
Weather = "warm"; Like = "nice"

End

temperature > 81 then do
Weather = "hot"; Like = "yes!"

End

Say "The temperature now is "temperature,
" and the weather is "Weather"."
Say "Do I like this weather? "Like

This is the same program as Example 1, except that we stacked the instructions on
one line, and we saved 6 lines in the program. That made this routine more
compact, and we can therefore see more of the program on one screen. This
technique, more importantly, did not compromise the appearance or readability of
this code.

Page [121]

Purpose:

Usage:

Example:

Sigl

Special TSO variable that contains the line number of the last instruction that
caused a jump to a label.

This variable is very useful for tracing and debugging purposes. It can tell you
exactly where you came from, without having to "drop breadcrumbs™.

The following exec:

Say "Hello. I am line 3"

Say "Hello. I am line 4"

Call ProcOl

Say "Hello. I am line 6"

Signal Tag0l

Tag0l: Say "Hello. I am line 9; Sigl="Sigl
Exit

ProcOl:

Say "Hello. I am line 13; Sigl="Sigl
Return

Will display:
Hello. I am line 3

Hello. I am line 4

Hello. I am line 13; Sigl=5
Hello. I am line 6

Hello. I am line 9; Sigl=7

Page [122]

Sign

Purpose: Return the arithmetic sign of a number

Type: Rexx Function

Syntax: Result = sign(number)

Usage: This function returns a 1 if the number is positive, and a negative 1 if it is

negative. It will return a zero if it is neither (a zero is considered neither positive
or negative).

Example 1:

Number = -3

Say "The sign of this number is " sign (Number)
Number = -1

Say "The sign of this number is " sign (Number)
Number = 0

Say "The sign of this number is " sign (Number)
Number = +1

Say "The sign of this number is " sign (Number)
Number = 2

Say "The sign of this number is " sign (Number)
Number = +3

Say "The sign of this number is " sign (Number)

The above example yields the following displays:
The sign of this number is -1
The sign of this number is -1
The sign of this number is O
The sign of this number is 1
The sign of this number is 1
The sign of this number is 1

Page [123]

Purpose:

Type:

Example:

Signal

To unconditionally branch (transfer control) to another part of the program.

This instruction lends to “spaghetti code", and should therefore be used only when
it would make the code clearer. "Bailing out™ of a complicated routine is a good

example.

Rexx Instruction
Signal Endit /* An error has occurred */
Endit:

Say "Program ending now due to error"
Exit

Note: | have found the signal instruction to be unreliable in some cases. In these cases, for some
reason, the signal statement simply fails to function. When this happens, the use of switches to
control processing is recommended. An example follows.

/* Initialize the error

Call ProcO1 /* Perform routine 01 */

If ErrorSw = 'N' then
Call ProcO02

If ErrorSw = 'N' then
Call ProcO03

ErrorSw = 'N'

/* Perform routine

/* Perform routine

switch */

02 */

03 */

If an error occurred in either ProcO1 or Proc02, instead of performing a "Signal™ to the end of the
program, you could simply set the error switch to "Y', and then conditionally perform the rest of
the program routines upon return.

Page [124]

Signal On
Purpose: Turn on error trapping.
Syntax: Signal On condition

See "Trapping Errors” in the Environment section of this manual for a discussion
of this instruction.

Page [125]

Purpose:
Type:
Syntax:

Usage:

Example 1:

SourceLine
Return the text of the program source
Rexx Function
Result = SOURCELINE(number)

This function will return the actual program text of the line number supplied.

/* Testl - Rexx Example Program */

Say "Hello World #1"

Say "Hello World #2"

Say "Hello World #3"

Say "Hello World #4"

Say "Hello World #5"

Say "Hello World #6"

Say "Hello World #7"

Say "Line three of the program is "SourceLine (3)

O 00 Joy Ul d WN K

The above example will display the following:

Hello World #1

Hello World #2

Hello World #3

Hello World #4

Hello World #5

Hello World #6

Hello World #7

Line three of the program is Say "Hello World #2"

Page [126]

Purpose:

Type:

Syntax:

Usage:

Example 1:

Space
Adds blanks to or removes blanks from between words in a string.
Rexx Function

NewsString = SPACE(OIdString,quantity)
where NewsString is the result of putting quantity blanks between every word in
OldString.

If quantity is "0", this function will remove all blanks from the string. The
function does not take into consideration how many spaces are already between
words. It sets the string to the quantity you supply. Therefore, this instruction can
be used to nicely format a sentence.

Greeting = "Merry Christmas to one and all"”
NewGreeting = space (Greeting,0)

Say NewGreeting

NewGreeting = space (Greeting, 1)

Say NewGreeting

NewGreeting = space (Greeting,?2)

Say NewGreeting

NewGreeting = space (Greeting, 3)

Say NewGreeting

This exec will display the following:
MerryChristmastooneandall

Merry Christmas to one and all

Merry Christmas to one and all
Merry Christmas to one and all

Page [127]

Purpose:

Usage:

Example 1:

Stack

Serve as an "input queue” for TSO commands in a Rexx Exec

The Stack (or TSO stack, as it is more commonly called) is a storage area used to
hold TSO commands that are about to be executed. These TSO commands were
moved into the stack by either an individual keying them in at the terminal, or by
a Rexx program.

When a Rexx exec needs information, it first looks for it on the stack. If the stack
is empty, TSO will prompt the user (see example 1).

If you wish to read TSO commands directly, and bypass the stack, use Parse
External.

More than one TSO stack can be created. The number of TSO stacks is limited
only by the core available. Only the current TSO stack, though, is the one that is
the subject of operations.

The TSO stack can be shared by subroutines and by called programs.

If you read information into the stack and leave it there, then after your Rexx exec
ends, TSO will try to execute each item in the stack (see example #2).

Several commands operate on or manipulate the stack:

Push Adds items to the stack

Pull Removes items from the stack

Queue Adds items to the stack

NewStack Establishes a new stack

DelStack Deletes the current (newest) stack

ExeclO Reads/writes a file or array into/from the stack

Each of the items above is documented in this manual in detail as their own
subjects.

NewStack

Push "Hello #1"

Pull Answerl

Say "I just learned" Answerl
Pull Answer?2

6 Say "I just learned" Answer?2

In this example,

1 Establishes a new stack

2 Puts the phrase "Hello #1" onto the stack

3 Gets (and removes) that phrase from the stack

4 Displays I just learned HELLO #1

5 Prompts the user for more input, since the stack is now empty

a b owN -

Page [128]

6 Displays whatever the user just typed in.

Example 2:
NewStack
Push "Hello #1"
Push "Hello #2"
Push "Hello #3"
Push "Hello #4"
Push "Hello #5"
This example will display the following:
COMMAND HELLO NOT FOUND
COMMAND HELLO NOT FOUND
COMMAND HELLO NOT FOUND
COMMAND HELLO NOT FOUND
COMMAND HELLO NOT FOUND

Page [129]

Strip

Purpose: Removes leading or trailing spaces from a string.
Type: Rexx Function
Syntax: NewsString = STRIP(OldString,option,char)

where NewsString is the result of removing char from OldString based on the
setting of option.

Usage: The function will remove from the old string:
Leading char (option = "L"),
Trailing char (Option ="T"), or
Leading and Trailing char (Option = "B")
The third parameter, char, specifies the character to be removed. If specified, it
must be exactly one character long. The default is blank.

Example 1:

Greeting = " Happy New Year to you
NewGreeting = Strip(Greeting,"L")
Say NewGreeting

NewGreeting = Strip(Greeting,"T")
Say NewGreeting

NewGreeting = Strip(Greeting,"B")
Say NewGreeting

This exec will display the following results:
Happy New Year to you

Happy New Year to you
Happy New Year to you

Page [130]

Purpose:
Type:
Syntax:

Usage:

See also:

Example:

SubCom

Poll TSO to see if a particular environment is available.
TSO command
Subcom environment

This command can be used to test to see if an environment is available before
issuing commands to it. For example, before you invoke the ISPF editor on a
dataset, it may be a good idea to first check to see if the system has ISPF available
(although this would be a good assumption).

This is the strongest reason that | could come up with for using this command,
which probably demonstrates why | have never used it in any of my execs. In
certain situations, there may indeed be a good reason to use it.

Address

"SubCom TSO"

If RC = 0 then Say "TSO is available"

Else Say "TSO is not available; RC=" RC

"SubCom ISPE"

If RC = 0 then Say "ISPF is available"

Else Say "ISPF is not available; RC=" RC
"SubCom Junk"

If RC = 0 then Say "Junk is available"

Else Say "Junk is not available; RC=" RC
"SubCom ISPEXEC"

If RC = 0 then Say "ISPEXEC is available"

Else Say "ISPEXEC is not available; RC=" RC
"SubCom ISREDIT"

If RC = 0 then Say "ISREDIT is available"

Else Say "ISREDIT is not available; RC=" RC
"SubCom CMS"

If RC = 0 then Say "CMS is available"

Else Say "CMS is not available; RC=" RC

The above exec will display the following:
TSO is available

ISPF is not available; RC=1

Junk is not available; RC=1

ISPEXEC is available

ISREDIT is available

CMS is not available; RC=1

Page [131]

SubStr

Purpose: This is a Rexx built-in function that will return a portion of a string or variable.
Type: Rexx Function
Syntax: var = SUBSTR(string,begin,length)

var Any variable name

string The object string (can be a literal also)

begin The beginning position of the string you wish to refer to
length Then length of the string you wish to refer to

Example: Section = substr(alphabet,4,5)

Where alphabet is a string containing all of the letters of the alphabet
After this instruction executes, the variable SECTION will contain "DEFGH"

Page [132]

SubWord

Purpose: Returns a subset of a sentence
Type: Rexx Function
Syntax: NewString = SUBWORD(OIdString,start,quantity)

where NewsString is the result of copying quantity words from OldString, starting
at word number start.

Usage: Extract a fixed number of words from a sentence.
Example 1:
Phrase = "Fourscore and seven years ago, our
fathers..."

Extract = SUBWORD (Phrase, 2, 3)
Say Extract

Extract = SUBWORD (Phrase, 7, 3)
Say Extract

This example will display the following:
and seven years

fathers...

Page [133]

Purpose:
Type:
Syntax:

Usage:

Example:

Symbol
Tells if a character string is a variable, literal, or neither
Rexx Function
Result = SYMBOL(charstring)

According to "the book", this function will test a character string, and return one
of the following:

VAR If the character string is a valid variable name

LIT If the character string is a valid literal

BAD If neither of the above

I have found that this function will return only "LIT" or "BAD", based on whether
the supplied character string can comprise a valid variable name.

Result = SYMBOL (Myname)
Say Result

Myname = 4

Result = SYMBOL (Myname)
Say Result

Result = SYMBOL ("**")
Say Result

Will display:

LIT

LIT

BAD

Page [134]

SYSDSN

Purpose: Return the status of a datasetname

Type: TSO external function

Syntax: Result = SYSDSN(datasetname)

Usage: This function can tell you whether a dataset appears in the catalogue, whether a

member name appears in a PDS, etc. It is not quite as comprehensive as LISTDSI.

Consult the following chart for possible results.

Result Reason
DATASET NOT FOUND The datasetname was not in the catalogue
ERROR PROCESSING REQUESTED
DATASET
INVALID DATASETNAME The datasetname was invalid: Length > 44
chars, invalid chars, etc.
MEMBER NOT FOUND Looking for a member of a PDS, but it

was not found

MEMBER SPECIFIED, BUT DATASET | Looking for a member of a PDS, but the

IS NOT PARTITIONED dataset is not a PDS
MISSING DATASETNAME SYSDSN(): no datasetname supplied
OK Disk dataset, in catalogue

PROTECTED DATASET

UNAVAILABLE DATASET

VOLUME NOT ON SYSTEM Tape dataset, in catalogue
See also: LISTDSI
Example:

MyDSN = “ ”dsn”’”
RC = SYSDSN (MyDSN)
If RC = “OK” then
Say MyDsn “was found”
Else
Say RC
end

Page [135]

SYSVAR

Purpose: Return information about the system

Type: TSO external function

Syntax: Result = SYSVAR(infoRequest)

Usage: This function can tell you the current TSO user signed on to the system, the name

of the logon proc being used, and many other things.
Consult the following chart for a list.

InfoRequest Description

SYSCPU The number of CPU seconds used in this TSO session so far

SYSENV Thre environment you are currently executing in:
FORE for foreground; BACK for background (via JCL)

SYSHSM This will be the HSM release number. If HSM is not available, this
will be blank.

SYSICMD The name of the command or Rexx exec

SYSISPF ACTIVE if the ISPF dialogue manager is active. Test this variable in

your exec if it depends on ISPF services being available.

SYSLRACF RACEF level, or spaces if not available

SYSLTerm Number of lines available on the terminal screen.

SYSNEST YES if executed from another exec or CLIST; NO if executed from
TSO.

SYSPCmd The most recently-executed TSO command from this exec. It will be
EXEC if there was none.

SYSPREF The prefix that TSO puts in front of unqualified datasethames.

SYSPROC The name of the procedure that was used to log on to TSO

SYSRACF AVAILABLE, NOT AVAILABLE, or NOT INSTALLED

SYSSCmd The most recently-executed TSO sub-command. This is "the book™
explanation, but | find it to be always blank.

SYSSRV How many SRM units were used so far

SYSTSOE TSO/E level

SYSUID The TSO UserID of the currently-logged on user

SYSWTerm Number of columns available on the terminal screen. This is
LINESIZE+1

Page [136]

Time

Purpose: This is a REXX built-in function that will provide you with the current time, in a
variety of different formats.

Type: Rexx Function
Syntax: Result = Time(option)

Based on the specification of the Options below, "result” will contain the time in
the corresponding format, if the current time was 1:05pm (plus a few seconds).

Option Meaning Format Example

(blank) normal (same as 'N’) hh:mm:ss 13:05:13

C Civil hh:mm xm 1:05pm

E Elapsed (seconds and microseconds) §ssssssss.mm | 111111.222222
mmmm

H hour, 24-hour format hh 13

L long hh:mm:ss.ddd | 13:05:13.090191
d

M Number of minutes since midnight nnnn 785

N normal hh:mm:ss 13:05:13

R Reset elapsed time 0

S Number of seconds since midnight nnnnn 47113

If you use an unsupported option, for example "A", you will see an error message similar to the
following:

5 +++ Say "The time now is " Time(A)
Error running AskTime, line 5: Incorrect call to routine

This command can also be used for measuring elapsed time. The first time this command is
issued with either the 'E’ or 'R option, the elapsed time counter is started. Every subsequent
issuance of the command with either of these options will return the elapsed time since the first
issuance of Time('E’) or the last issuance of Time('R’). Issuing the command with option 'R" will
reset the elapsed time counter, but only after it returns the elapsed time.

The following example demonstrates the use of elapsed time.
Dummy = Time (E) /* Start time */

Say "I am waiting for you to hit enter!"

Pull Answer

Duration = Time ('E")
Say "Pointl:" Duration "seconds!"
Duration = Time('E")
Say "Point2:" Duration "seconds!"
Duration = Time ('R")
Say "Point3:" Duration "seconds!"
Duration = Time('E")
Say "Point4:" Duration "seconds!"
Say "Point5:" Time('E') "seconds!"

Page [137]

This exec will display something like this:

I am waiting for

Pointl:
Point2:
Point3:
Point4:
Point5:

1

O O

.200962
.203493
.205070
.001185
.002150

you to hit enter!

seconds!
seconds!
seconds!
seconds!
seconds!

Page [138]

Trace
Purpose: List instructions as they are executed; variables as they are set
Type: Rexx Function

See “Debugging” for a discussion on this subject

Page [139]

Purpose:
Type:
Syntax:

Usage:

Example 1:

Translate
Convert characters to other characters
Rexx Function
Result = TRANSLATE(ObjectString,String2,Stringl)

Convert all occurrences of ObjectString that appear in String1 to the
corresponding character in String2.

| find this a difficult command to conceptualize, to explain, or to remember, so a
very detailed example is necessary here.

Say TRANSLATE ("ABCDEFGHIJ","1234567890", "DAVE")
Would result in:

2BC14FGHIJ
Because:

Stringl = vpave "
String2 = r1234567890"
ObijectString = "ABCDEFGHIJ"
Result = "2BC14FGHIJ"

In ObjectString, the first character, A, appears in Stringl. So that A in
ObjectString is replaced by 2, which is the character in String2 that corresponds to
the character in Stringl.

The next character in ObjectString does not appear in Stringl, so it is not
converted. The same applies to the third.

The fourth character in ObjectString (D), however, does appear in Stringl. So that
D in ObjectString is replaced by 1, which is the character in String2 that
corresponds to the character in String1.

To visualize how this command works, and how to make it work for you, just lay
Stringl on top of String2, like I have here.

Page [140]

Example 2: In this scenario, it turns out that the English teacher mistakenly gave the class the
wrong test: it was one grade level too high. So now, she wants to push everyone's
grade up one notch, instead of making everyone re-take the test. First, let's lay out
String 1 and String 2:

Stringl = 'BCDF'

String2 = 'ABCD'

Then code the Rexx exec, as follows:
0ldGrades = "BBCCBDFDDFEFD"

NewGrades = TRANSLATE (OldGrades, "ABCD", "BCDF")
Say "The old grades were" OldGrades

Say "The new grades are " NewGrades

which will result in:

The old grades were BBCCBDFDDFED

The new grades are AABBACDCCDC

Example 3: This command converts 1to A and 2 to B
String = Translate(String,”AB”,”12")

Page [141]

Purpose:

Type:

Syntax:

Usage:

Examples:

Trunc
Return a number with a specified number of decimal places
Rexx Function

NewNumber = TRUNC(Number,DecimalPlaces)
where NewNumber is Number with DecimalPlaces decimal places.

This command could have been called Decimal Places, because that applies more
than Trunc. The command will add or remove positions based on the specification
of decimal places.

Say Trunc(1.12345,0)
Say Trunc(1.12345,4)
Say Trunc(1l,4)

Will display:

1

1.1234
1.0000

Page [142]

Purpose:

Type:

Syntax:

Examples:

See also:

Upper
Convert a character string to upper case
Caution: This is NOT a function. It can NOT be used on the right side of an
expression.
Rexx Instruction
UPPER variablel {variable2} {variable3}...
fname='George"; Iname="Bush’
Upper fname Iname
Say Iname ', fname /* displays "BUSH , GEORGE" */

Parse Upper Arg

Page [143]

UserID

Purpose: Return the TSO UserID of the resource who is currently logged on to the system
Type: Rexx Function

Usage: This is commonly used to determine access priviledges.

Examples:

Say "Your userID is" UserID()

Could display:

Your userID is DGRUNDO1

Page [144]

Purpose:

Type:
Syntax:

Usage:

Value

Returns the contents of a variable after resolving it. The main purpose for this
function is to resolve a dynamically-created variable.

Rexx Function
NewVar = VALUE(variable)
There is a subtle difference between using VALUE(variable) and just the variable

itself. VValue will convert the contents of a variable to upper case while resolving
it.

Simple example:

Name = "Dave"
Say "My name is "value (Name)
Say "My name is "Name

The above exec will display:
My name is DAVE
My name is Dave

Example of resolving a dynamically-created variable:

In one particular Rexx exec, | create ten arrays, named Array01, Array02, ... Array10. We
wish to perform the same processing on each array, so we use a subroutine, or what is more
commonly known as a procedure.

Page [145]

Purpose:

Syntax:

Usage:

Example:

Variables

To retain values for use later in the program. A variable can hold any type of
value: character, numeric, hex, binary, etc.

A variable must start with a character (never a number), and certain special
characters. The rest of the variable can contain alphabetic characters, numbers,
and certain special characters.

Some special characters that can appear in a variable name are as follows:
@_ #$!

Some special characters that can not appear in a variable name are as follows:
% &

For any other special characters, you're on your own. Try it out; it can't hurt.

A variable name can be up to 250 characters long.

A variable in Rexx does not get declared. It is assigned a value by using it on the
left side of an assignment statement, or with the use of certain Rexx instructions.
A variable is not a variable until it is given a value. Note that until a variable is
given a value, it is a literal. If a variable's value is removed (with the "Drop™), it is
then converted back to a literal.

If you happen to see a variable name appear in your output unexpectedly, there is
a good chance that you misspelled either it, or the one that you initialized.

My_name = "John Smith"

Page [146]

Purpose:

Syntax:

Usage:

Example:

Variables, Compound
To act as a variable, with an added benefit. The same variable name can be used
to contain any number of similar values. This is a very powerful feature of Rexx,
and is very simple to implement. This feature is commonly used to construct an
array.
Same as regular variables, but with a period and a suffix added to the end.

Simply assign a value to the nth element of the array. The "0th" element is used to
contain the number of elements in the array.

The following excerpt from a Rexx exec:

Name.l = "Mary"

Name.2 = "Joe"

Name.3 = "Alice"

Name.4 = "Smokey"

Name.0 = 5 /* Establish no. of elements */

Say "There are "name.0" elements in this array"
Do I =1 to Name.O

Say Name.TI
End

Will yield the following results:
Mary

Joe

Alice

Smokey

NAME. 5

Page [147]

Purpose:

Type:

Syntax:

Usage:

Example:

Verify

Tells whether certain characters are contained in a given character string.
Note: It is not looking at words. It is looking at individual characters.

Rexx Function

Result = VERIFY (FindString,ObjectString)
Result is the first position of FindString that does not appear in ObjectString.

If Result is zero, then all of FindString appears somewhere in ObjectString. Both
strings are case-sensitive: a lower-case letter will not match an upper-case, and
vice-versa.

Say Verify('I', 'TEAM')

Say Verify('Scienc',"ConSciencious")
Say Verify('fat',"indefatigable")
Say Verify('hillary', 'hilarious')

Will display:
1 (There is no "I" in "TEAM")

0
0
7

Page [148]

Purpose:

Type:

Syntax:

Usage:

Example:

Word

Returns the nth word of a string.
Rexx Function

Result = WORD(phrase,n)
Result is the nth word of phrase.

If n is greater than the number of words in the phrase, result will contain blanks. If
n is zero, the function will err out.

Say Word("Merry Christmas and Happy New Year",2)
Say Word("Merry Christmas and Happy New Year",7)
Say Word ("Merry Christmas and Happy New Year", 0)

Will display:
Christmas

3 +++ Say Word("Merry Christmas and Happy New Year",0)
Error running Testl, line 3: Incorrect call to routine

Page [149]

Purpose:

Type:

Syntax:

Usage:

Example:

WordIndex

Return the character position of a word in a string
Rexx Function

Position = WORDINDEX(string,n)
where Position is the character number of the nth word in string.

This function will return the character position where a particular word starts in a
string.

Answer = WordIndex ("Merry Christmas and Happy New Year",5)
Say Answer

Would display
27

The 5th word of the string is New, which starts at character position number 27.

Page [150]

Purpose:

Type:

Syntax:

Usage:

Example:

WordLength
Return the length of a word in a string
Rexx Function

Answer = WORDLENGTH(string,n)
where Answer is the length of the nth word in string.

This function returns the length (number of characters) of a word in a string.

Answer = WordLength ("Merry Christmas and Happy New Year",5)
Say Answer

Would display
3

The 5th word of the string is "New", whose length is 3.

Page [151]

WordPos

Purpose: Return the position of a word or phrase in a string
Type: Rexx Function
Syntax: Answer = WORDPOS(phrase,string)
where Answer is the length of the nth word in string.
Usage: This function returns the word position of a phrase in a string.
Example:

Answer = WordPos ('and Happy',"Merry Christmas and
Happy New Year")
Say Answer

Would display
3

Page [152]

Words

Purpose: Returns a count of the words in a string
Type: Rexx Function

Syntax: Answer = WORDS(string)

Example:

Answer = Words ("Merry Christmas and Happy New Year")
Say Answer

Would display
6

Page [153]

Purpose:

Type:

Syntax:

Usage:

Example 1

Example 2

XRange
Return a string of characters between two characters in the ASCII character set.
Rexx Function

Result = XRange(startchar,endchar)

startchar-The first ASCII character that will be returned. The default is low-value
(X'00".

endchar- The last ASCII character that will be returned. the default is high-value
(X'FF).

This function will return all of the characters in the ASCII Character set between
startchar and endchar, inclusive. If startchar is greater than endchar, then the
string that is returned will wrap around through the beginning.

The following example will not return the letters in the alphabet as a string. This
is unfortunate, because the function would be a little more useful if it considered

only valid characters.

Alphabet = XRange ('A','Z")

Say Alphabet

The reason for this is that the leters of the alphabet do not appear continuously in
the ASCII character set. What would be returned would be the ASCII characters
represented by X'C1' through X'E9', inclusive:
ABCDEFGHI.......JKLMNOPQR........ STUVWXYZ

The following example will return the alphabet.
Alphabet = XRange('A','I')XRange('J','R')XRange('S','Z2")
Say Alphabet

Page [154]

Purpose:
Type:
Syntax:

Example:

X2C

Converts a hexadecimal string to character
Rexx Function

CharString = X2C(hexstring)

Answer = X2C('C4ClES5C560F1F6F1F6")
Say Answer

Would display
Dave-1616

Page [155]

X2D

Purpose: Converts a hexadecimal string to decimal
Type: Rexx Function

Syntax: Number = X2D(hexstring)

Example:

Answer = X2D('FF'")
Say Answer

Would display

255

Answer = X2D('FFFF')
Say Answer

Would display
65535

The maximum value that can be converted is X’3B9ACIFF’, which equals 999,999,999 in decimal.

Page [156]

Instructions Not Covered

Certain instructions, commands, and functions are seldom, if at all, used in applications.
These are used by system administrators and system programmers. These instructions,
commands, and functions are listed here. Why are they even mentioned, if we are not going to
document them?

They are listed, for the most part, to let you know (and to remind me) that they are indeed
available, in case we want to use them or learn more about them. Documentation of these
instructions, commands, and functions is beyond the scope of this manual. Check the appendix
for additional sources of documentation.

DropBuf Delete a data stack buffer
ExecUTtil Control Rexx processing options for the current Rexx environment

MakeBuf Add a buffer to the data stack

Options This ir]struction is used for DBCS (Double-Byte Character Set) character and data
operations support.

Qbuf determine the number of data stack buffers that exist

Qelem Determine the number of data stack elements that exist

Storage Retrieve a number of bytes from a main storage address, or store a number of

bytes into a main storage address.

Page [157]

Section Il -A Starter Rexx Tutorial

Page [158]

Follow this tutorial by keying in the example Rexx execs and reading the
associated commentary. If your results are not identical to those of the tutorial, try to find out
exactly why. Each example builds on the previous ones, so it is important that you understand
each before you move on.

/* Rexx Exec Tutorial #1 */
Say "Hello World"

This is one of the shortest Rexx execs ever written. All it does is display the famous
programmer's primer message.

/* Rexx Exec Tutorial #2 */

Say "What is your name?"

Pull Answer

Say "So, your answer is " Answer". That is swell!"

This exec will ask you your name, and if you reply, it will echo it back, something like this:
So, your answer is JOHNNY. That is swell!

/* Rexx Exec Tutorial #3 */
Say "What is your name?"
Pull Answer

Say "So, "Answer", how old are you?"

Pull Age

Agelndays = Age * 365

Say "If you didn't lie to me, you are about" AgelnDays "days old."

This exec will ask you your name, and then perform a calculation. Notice that | used an
apostrophe within a string that was enclosed in quotation marks. The exec's last display would

look like this:
If you didn't lie to me, you are about 8030 days old.

From here, the possibilities are endless. Rather than waste your (and my) time by making you go

through endless and pointless exercises, | will stop here, and let you get started with playing with
some ideas of your own. Just remember: have fun!

Page [159]

Section 111 - Rexx Examples

| believe strongly in examples. No matter what someone is trying to say, it is clearer if it
can be illustrated with a good example. A person can then glean an interpretation from that
example.

The easiest way to write a Rexx exec is to take one that exists, and tailor it for your own
use. Remember that like with any programming language, if you copy someone's source code
verbatim, it's not ethically cool to put your name on it. If you use a major portion of source code
that is provided to you for free, it is only fair to at least give credit to the author somewhere in
your program. Please respect an author's inventiveness and hard work. Since Rexx execs are
distributed with the source, if you publish any new Rexx execs that you created using an existing
one as a basis, you are requested to at least credit the author. All of these examples were written
by David Grund, and are free to use.

The examples provided here vary in purposes, but can be tailored to most specific needs
that you have. They don't necessarily demonstrate the best way to write a Rexx exec in all cases.
They do, however, demonstrate different techniques.

In some cases, some of the execs depend on data from ISPF libraries. That data is not
included.

Disclaimer: All examples are provided for the sake of example only. There is no

guarantee that these work as desired, or are entirely bug-free. You are free to, and encouraged to,
develop and improve any or all of these examples.

Page [160]

The examples provided here are as follows:

ALLOCEIO
CAPTSO
CHGBLKC
CHGDATA
CHGSTEP
COMMANDS
COMPCO
COMPDS
COMPPDS
DD
DELDUPS
DURATION
FIXJCL

FX

HD

INIT
INITSPF
JOBCARD
LA

LISTDSI
LOTTERY
LPDSIX
PROCSYMS
PTS

PTS2
REXXMODL
SCALE

SDN
SHOWDUPS
STACK
TIMEFMTS
TIMETOGO

Allocate O/P dataset; write Rexx array to it
Capture TSO command output

Insert a COBOL change block

Modify a data file

Change steps in JCL

List available commands

Compare two files of order numbers
Compare two sequential datasets

Compare two PDS's

Add a DD Statement

Delete duplicate records

Time an EXEC

Fix Job Control

File name cross-reference

Hex Dump

Establish my TSO environment

Establish my ISPF environment

Create a jobcard

List TSO allocations

List dataset information

Pick lottery numbers

List a PDS Index to a Sequential File
Perform symbolic substitution
PDS-to-Sequential; member name is prefix
PDS-to-Sequential; member name is inserted
Rexx Exec Model

Display a Scale

Sorted Directory w/Notes; directory annotator
Show duplicate records
Start another ISPF session
Show all time formats
Display time until an event

Page [161]

ALLOCEIO - Allocate O/P dataset; write array to it

This is a code snippet that will allocate a TSO dataset, and then write a Rexx array to that
dataset. The TSO dataset is deleted first, in case it already exists.
"Delete "MapDSN
"Allocate DD(FiCvtDS) DA ("MapDSN") new space(l 1) tracks",
"LRECL (80) Block(6160) recfm(f b) RETPD(0)"

"ExecIO" MapArray.0 "DiskW FiCvtDS (STEM MapArray. FINIS"
"Free DDNAME (FiCvtDS) DA ("MapDSN")"

Page [162]

CAPTSO - Capture TSO command output

Using this exec, you can capture the output from just about any TSO command. The
purpose, of course, is to dump it into a dataset and edit it.

/* CapTSO - Capture TSO Output - Rexx Exec */
/* Written by David Grund */

Dummy = OutTrap ("output line.","*")
"LISTd 'GRUND.ASSEMBLY.DATA' m"
NumLines = OutPut Line.0

Say NumLines "lines were created"
Dummy = OutTrap ("OFF")

"Delete CAPTSO.List"
"Allocate DD(CapTSO) DA (CAPTSO.List) new space(l5 15) tracks",
"LRECL (80) Block(6160) recfm(f b) RETPD(0)"

"ExecIO" OutPut line.O "DiskW CapTSO (STEM OutPut Line. FINIS"
"Free DDNAME (CapTSO) DA (CAPTSO.List)"

ADDRESS "ISPEXEC" "EDIT Dataset (CAPTSO.List) "

Page [163]

/* ChgBlkC - Insert COBOL Change Block - ISPF Edit Macro

ADDRESS "ISREDIT"
Jll=

Jl2= "————————————
J21= "000002%*
J22="

J31= "000003* LOG
J32="

J41= "000004~* 9
J42= "tion line 1
J51= "000005%*
J52= "tion line 2
address "ISREDIT"
address "ISREDIT"
address "ISREDIT"
address "ISREDIT"
address "ISREDIT"
address "ISREDIT"
ADDRESS "ISREDIT"
address "ISREDIT"

nwo

CHGBLKC - Insert a COBOL change block

This Rexx exec is an ISPF edit macro, used to insert a program modification comment
block into a program. By using this exec, you can make the comment block will look the same
for every program, hence an increase in productivity. This technique, of course, can be used for
any language. I have created one for Easytrieve and another for Assembler.

MOO000 L *mmm == m e

(REXX EXEC) */

"MACRO PROCESS"

PROGRAM MODIFICATION LOG "

*n

DATE

* "

06/09/95 DAVID GRUND

*n

*n

"LINE_AFTER
"LINE_AFTER
"LINE AFTER
"LINE AFTER
"LINE_AFTER
"LINE_AFTER
"Cursor =1
"LINE AFTER

WHO

REASON "
change descrip"

change descrip"

0 =" "reglivegiete
1 =" mregzimnga22m'n
2 =" mrwg3inrgiz2m'e
3 =" mremgginng4ne
4 =" mrnmgs5imngs52mn
5 =" mregiirtetgiet
O"

0 = MSGLine",

"Please move these lines into the Remarks section.”™'"

Page [164]

CHGDATA - Modify a data file

This exec is used to modify a data file. It reads a data file into core (an array), modifies it
(with hard-coded instructions), and then writes it back out. This is an exec that is tailored for use
each time it is used

/* ChgData - Change a File - REXX Exec */

/* Written by David Grund */

/* This exec will read a data file, and modify it to contain */
/* conditions for testing: invalid data, etc */

[rmmm e —— Main Body of Program —--———--—————————————————————— */
ARG IPDSN OPDSN

IPCtr = 0 /* Input record counter */
OPCtr = 0 /* Output record counter */

Call Pgm Init

Do Forever

Call ReadRec /* Read rec into stack; count */
If IPEOF = "YES" then Leave
Pull IPRec /* Get it from the stack */
Call ProcessRecord /* Process it */
end
Call ProcEOJ /* EOJ Processing */
Exit
K * /
Y2 S —— */
/* Program Initialization */
Y2 S —— */
Pgm Init:
"DelStack"
If IPDSN = "" then do

Say "Command Type:

Syntax: ChgData IpDSN OpDSN"
Exit
end

If OPDSN = "" then do

OpDSN = IPDSN| |.Modified

Say "OPDSN not specified;" OPDSN "assumed."
end

"Alloc DDN (InFile) DSN("IPDSN") SHR"

If RC <> 0 then do
Say "I could not allocate "IPDSN". Sorry."
Exit

end

Dummy = ListDSI (IPDSN)

OPLRECL = SYSLRECL
OPBLKSize = SYSBlkSize

Page [165]

"Delete " OPDSN
"Free FI (OutFile)"
"Alloc DD(OutFile) DA ("OPDSN") New space(l5 15) tracks ",
"Lrecl ("OPLRECL") Block ("OPBlkSize") Recfm(F B)"
If RC <> 0 then do
Say "I could not allocate "OPDSN". Sorry."

Exit
end
Return
Y2 S —— */
ReadRec:
Y2 S */
"EXECIO 1 DiskR Infile" /* Add the I/P rec to the stack */
If RC <> 0 then do
IPEOF = "YES"
"EXECIO 0 DiskR Infile (Finis"™ /* Close the input file */
end
Else IpCtr = IpCtr + 1 /* Count the records */
Return ""
Y2 S — */
/* Process the Record */
/* ____________ */
ProcessRecord:

OpRec = IpRec

If IpCtr = 11 then /* Make the class invalid */
OPRec = Substr (IPRec,1,9) | |"0XRJIC"| |Substr (IpREc,15,307)

If IpCtr = 16 then /* Make the class invalid */
OPRec = Substr (IPRec,1,9)||1"123456789"||Substr (IpREc,19,303)

If IpCtr = 22 then /* Nom-transfer pack */
OPRec = Substr (IPRec,1,24) | |"XYZ"||Substr (IpREc,28,294)

If IpCtr = 33 then /* Nom-minimum */
OPRec = Substr (IPRec,1,27)||"ABC"||Substr (IpREc,31,291)

If IpCtr = 44 then /* Store Number */
OPRec = Substr (IPRec,1,33)||"DE"||Substr (IpREc,36,286)

If IpCtr = 55 then /* Store quantity */
OPRec = Substr (IPRec,1,36) | |"GHIJ"| |Substr (IpREc,41,281)

If IpCtr = 57 then /* Warehouse Number */
OPRec = Substr (IPRec,1,313)||"89"]| |Substr (IpREc,316,6)

If IpCtr = 32 then /* Warehouse quantity */
OPRec = Substr (IPRec,1,315) | |"DAVEG "

Push OpRec

"EXECIO" 1 "DiskW OutFile"

OpCtr = OpCtr + 1 /* Count the records */
Return

Page [166]

"

0

"DiskW OutFile

(Finis™" /* Close the file

"Free DDNAME (InFile OutFile)"
Say "*** End of Job Totals ***"

Y T
JXmm e
ProcEOJ:
"DelStack
"EXECIO"
Say IpCtr
Say OpCtr
Return

"records read"

"records written"

Page [167]

*/

CHGSTEP - Change steps in JCL

When you have religiously numbered the steps in a job stream, and find that you have to
insert a few, especially toward the beginning, your neatly-sequenced step names are
compromised.

This Rexx exec will "quickly™ renumber the steps so they are back in sequence and
incremented by 10.

Here, you are creating the list of TSO commands that you will use to ultimately make the
changes. Creating a TSO command set is less stressful than making the changes one-by-one.
This way, you don't have to remember where you left off, and you can use ISPF's editor to mass-
produce the change statements.

/* CHGSTEP - RENUMBER STEPS IN A JOB - REXX EXEC */

ADDRESS "ISREDIT" "MACRO PROCESS"

ADDRESS "ISREDIT" "C STEP190 STEP330 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP185 STEP320 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP180 STEP310 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP170 STEP300 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP160 STEP290 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP150 STEP280 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP140 STEP270 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP130 STEP260 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP120 STEP250 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP110 STEP240 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP100 STEP230 WORD ALL 10"
ADDRESS "ISREDIT" "C STEPOS6 STEP220 WORD ALL 10"
ADDRESS "ISREDIT" "C STEPOS5 STEP210 WORD ALL 10"
ADDRESS "ISREDIT" "C STEPOSO STEP200 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP080 STEP190 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP070 STEP180 WORD ALL 10"
ADDRESS "ISREDIT" "C STEPO60 STEP170 WORD ALL 10"
ADDRESS "ISREDIT" "C STEPO50 STEP160 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP040 STEP150 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP038 STEP140 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP037 STEP130 WORD ALL 10"
ADDRESS "ISREDIT" "C STEPO36 STEP120 WORD ALL 10"
ADDRESS "ISREDIT" "C STEPO35 STEP110 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP034 STEP100 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP033 STEP0OS90 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP032 STEPO80 WORD ALL 10"
ADDRESS "ISREDIT" "C STEPO31 STEPO70 WORD ALL 10"
ADDRESS "ISREDIT" "C STEPO25 STEP0O60 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP024 STEPO50 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP023 STEP040 WORD ALL 10"
ADDRESS "ISREDIT" "C STEP022 STEPO30 WORD ALL 10"

Page [168]

COFFEE - the Coffee Game

/* Coffee - Coffee Game
/* This is a Rexx learning exercise

/* Two people take turns trying NOT to guess the number picked by the

REXX

/* computer. The person who gets stuck with the number must buy.
PlName = "" /* Player 1 Name */

P2Name = "" /* Player 2 Name */

Turn =1

Say "Welcome to the Coffee Game. I will pick a random number. Two "
Say "people will take turns trying NOT to guess it. Whomever does,"
Say "LOSES!"

Say non

Say "Player 1, please tell me your name!"

Pull PIN

ame

Upper Plname

Say "Player 2, please tell me your name!"
Pull P2Name
Upper P2name
Redo:
Guesses = 0 /* Number of guesses */
CNo = Random(1l,999) /* Computer number */
/* Say "The computer picked number " CNo */
InProgress = Y
P1Number = 0 /* Player 1 number */
P2Number = 0 /* Player 2 number */
Lower = 0
Upper = 1000
Do While InProgress = Y
If Turn = 1 then do
Turn = 2
If (Upper - Lower) = 2 then do
Say Plname "LOSES (by default). The number was " CNo
Call Recap
Leave
End
Say Plname", pick a number between " Lower " and " Upper ".
Reaskl = N
Pull PI1Number
If (P1lNumber <= Lower) | (P1lNumber >= Upper) then do

Say "Dummy! I said between " Lower " and "Upper "!
ReAskl =Y

End
If ReAskl = Y then
Turn = 1
else do
Guesses = Guesses + 1

If CNo = PlNumber then do

InProgress = N

Say P1Name "LOSES. The number was " PlNumber
Call Recap

Leave

End

El

se do
If P1Number < CNo then Lower = PlNumber
If PlNumber > CNo then Upper = PlNumber

End

Page [169]

Try again!"

End

End
If Turn = 2 then do
Turn = 1
If (Upper - Lower) = 2 then do
Say P2Name "LOSES (by default). The number was " CNo
Call Recap
Leave
End

Say P2Name", pick a number between " Lower " and " Upper "."
Reask2 = N
Pull P2Number
If (P2Number <= Lower) | (P2Number >= Upper) then do
Say "Dummy! I said between " Lower " and "Upper "! Try again!"
ReAsk2 =Y
End
If ReAsk2 = Y then
Turn = 2
else do
Guesses = Guesses + 1
If CNo = P2Number then do
InProgress = N
Say P2Name "LOSES. The number was " P2Number
Call Recap
Leave
End
Else do
If P2Number < CNo then Lower = P2Number
If P2Number > CNo then Upper = P2Number
End
End
End
End

Say "Again?"

Pull Ans

Upper Ans

If Ans = Y then signal ReDo
exit

Recap:
Adjective = "only"
If (Upper - Lower) > 25 then Adjective = "a Whopping"
Say "The spread was " Adjective (Upper - Lower)
Say "This game took " guesses "guesses."
Return

Page [170]

COMPCO - Compare Two Files of Order Numbers

/* CompCO - Compare Two Files Of Order Numbers - Rexx */

/* Written by David Grund */
IPDSN1 = "'DGrund.STEP120.35YSUT2'"

IPDSN2 = "'DGrund.STEP140.S5YSUT2'"

Call Proc0l /* Program Initialization */
Call Proc02 /* List First File to an Array */
Call Proc03 /* List Second File to an Array */
Call Proc04 /* Compare files now */
Call Proc99 /* Finalization */
Exit
2 — *)
/* Called Procedures */
/* __ */
/* ____________ */

/* Program Initialization */

2 — *)

ProcO1l:

Say "CompCO - Compare Two Files of Order Numbers"
Say "Proceeding..."

Return

Y —— */

/* Read first file into core */
2 —— */

Proc02:

"Free fi(sysutl)"

"Allocate Fi (SYSUT1) DA ("IPDSN1") shr"

"ExecIO * DiskR SYSUT1 (STEM FilellLines. FINIS"
"Free FI(SYSUT1)"

Say FilelLines.0 "records read from FILE2"

Return

/* ____________ */

/* Read second file into core */
Y —— */

Proc03:

"Free fi(sysut2)"

"Allocate Fi(SYSUT2) DA("IPDSN2") shr"

"ExecIO * DiskR SYSUT2 (STEM File2Lines. FINIS"
"Free FI(SYSUT2)"

Say File2Lines.0 "records read from FILE1"

Return

Y2 S — * /

/* Compare the arrays now */

Y2 S —— */

Proc04:
FilelRec = 1; File2Rec = 1;
Call ReadFilel /* Read first record from File 1 */
Call ReadFile?2 /* Read first record from File 2 */

Page [171]

InFilelOnly = 0; Infile20nly = 0; InBoth = 0;

Do Forever

/* Say "Comparing " FilelLine "to" File2Line */
If FilelLine = File2Line then do
If FilelLine = "99999" then Leave
/* Say FilelLine" in both files" */
InBoth = InBoth + 1
Call ReadFilel /* Read next record from File 1
Call ReadFile2 /* Read next record from File 2
End
Else If Filelline < File2Line then do
InFilelOnly = InFilelOnly + 1
Say FilelLine" in FILEZ2 but not in FILEL1"
Call ReadFilel /* Read next record from File 1
End
Else do
Infile20nly = Infile20nly + 1
Say File2Line" in FILEl but not in FILE2"
Call ReadFile2 /* Read next record from File 2
End

End
Return
2 * /
/* Read a record from File 1 */
2 * /
ReadFilel:
If FilelRec > Filellines.0 then
FilelLine = "99999" /* "end of file" */
Else DO
FilellLine = left(FilelLines.FilelRec,5)
FilelRec = FilelRec + 1;
End
Return
2 * /
/* Read a record from File 2 */
Y * /
ReadFile2:
If File2Rec > File2Lines.0 then
File2Line = "99999" /* "end of file" */
Else Do
File2Line = left(File2Lines.File2Rec,b)
File2Rec = File2Rec + 1;
End
Return
Y2 * /
/* Finalization */
2 * /
Proc99:
Say "In FILE2, not in FILEl:" ForMat (InFilelOnly, 5)
Say "In FILEl, not in FILE2:" Format (InFile20nly, 5)
Say "In Both :" ForMat (InBoth, 5)
Return

Page [172]

*/
*/

*/

*/

Page [173]

COMPARE - Compare two sequential datasets

This exec will call IEBCOMPR to compare two datasets. You don't get a comprehensive
and detailed listing of differences. Instead, you get notification as to whether the two datasets
contain exactly the same data- a check that is required in a parallel test.

Arg IPDSN1 IPDSN2

If Arg() == 0 then do
Say "Compare - Compare two TSO datasets"
Say " Type:

Syntax: Compare IPDSN1 IPDSN2"

Say " Please reenter this command"
Exit
End
If SYSDSN(IPDSN1l) = "OK" then nop
Else do
Say "I cannot find "IPDSN1
Exit
End
If Arg(2) == '' then nop
Else do

Say "Please enter the name of the second dataset"
Pull IPDSN2

End
If SYSDSN(IPDSN2) = "OK" then nop
Else do
Say "I cannot find "IPDSN2
Exit
End

"Free fi(sysutl,sysut2,sysin,sysprint)"
"Allocate Fi (SYSUT1) DA ("IPDSN1") shr"

"Allocate Fi (SYSUT2) DA ("IPDSN2") shr"

"Allocate Fi (SYSIN) DUMMY"

"Allocate Fi (SYSPRINT) DA (*)"

"Call 'SYS1.Linklib (IEBCOMPR) '""

Page [174]

COMPDSE - Compare Two Sequential Datasets - Enhanced

This exec will compare two sequential datasets, line-for-line, and report differences.
Neither file is assumed to be in any kind of sequence. This differs from COMPDS in that it does
not call IEBCOMPR,; it does the compares internally.

The best thing about this tool is that it can be copied and modified for specialized file
compare needs.

/* COMPDSE - Compare Two Datasets - Enhanced
/* Written by David Grund

/* This exec will compare two sequential datasets,

REXX */
*/

line-for-1line.

We do not regard the input file's sequence. */

ARG IPDS1 IPDS2
Call ProcO0l /* Program Initialization */
Call Proc02 /* Copy both datasets to an array */
Call Proc04 /* Compare files now */
Call Proc99 /* Finalization *x/
Exit
2 * /
/* Called Procedures */
2 * /
2 S —— */
/* Program Initialization */
Y S —— */
ProcO1l:

Say; Say; Say

Say "CompDSE - Compare Two Datasets - Enhanced"

If IPDS1 = "" 3 IPDS2 = "" then do

Say "Command Syntax: CompDSE IPDS1 IPDS2"
Exit

End

Say "Comparing "IPDS1 "to" IPDS2

Say "Proceeding..."
Return
Y —— */
/* Copy both datasets to arrays */
2 S —— */
Proc02:

X = OutTrap ("ON"); "Free Fi(IpFile) DA("IPDS1")"; X=OutTrap ("OFF")

"Alloc FI(IPFile) DA ("IPDS1")
If RC > 0 then exit

"ExecIO * DiskR IPFile
"Free FI(IPFile)"
X = OutTrap ("ON") ;
Say DS1Lines.0

SHR"
(Stem DSl1lLines. Finis "

"Free Fi(IpFile)";
"lines were found in"

X=0OutTrap ("OFF")
IPDS1

X = OutTrap ("ON"); "Free Fi(IpFile) DA("IPDS2")";
"Alloc FI(IPFile) DA("IPDS2") SHR"

If RC > 0 then exit

X=0OutTrap ("OFF")

Page [175]

"ExecIO * DiskR IPFile (Stem DS2Lines. Finis "
"Free FI(IPFile)"
X = OutTrap ("ON"); "Free Fi(IpFile)"; X=OutTrap ("OFF")
Say DS2Lines.0 "lines were found in" IPDS2
Return

Y2 S —— */

/* Compare the files now */
Y2 S */

Proc04:

CtrEquals = 0; CtrNEquals = 0;
Do I = 1 to DSlLines.O
If DS1Lines.I = DS2Lines.I then
CtrEquals = CtrEquals + 1
Else do
CtrNEquals = CtrNEquals + 1
Say "Records #"I" differ:"
Say "IPDS1l: "DSlLines.I
Say "IPDS2: "DS2Lines.I

Say
End
End

Return
/* ____________ */
/* Finalization */
/* ____________ */
Proc99:

Say CtrEquals "records were identical”

Say CtrNEquals "records were different"
Return

Page [176]

COMPPDS - Compare two PDS's

This command will compare two partitioned datasets. One is considered a "test" PDS; the
other is considered a "production™ PDS.

- ompare S - XecC
/* COMPPDS C PDS' REXX E */
ARG TestPDS ProdPDS

/* This command will compare a "Test" PDS against a "Production" PDS.*/
Call Proc0l /* Program Initialization */

Call Proc02 /* List First PDS Members to an Array */
Call Proc03 /* List Second PDS Members to an Array */

Call Proc04 /* Compare files now */
Call Proc99 /* Finalization */
Exit
2 —————, */
/* Called Procedures */
K * /
2 S —— */
/* Program Initialization */
Y2 S— */
ProcO1l:

Say "CompPDS - Compare PDS's"

If TestPDS = "" | PRODPDS = "" then do

Say "Command Type:

Syntax: CompPDS TestPDS ProdPDS"
Exit
End
Say "Comparing "TestPDS "to" ProdPDS
Say "Proceeding..."

Return
/* ____________ */
/* List Members of TestPDS */
Y2 S —— */
Proc02:
/* Say "Reading "TESTPDS"..." */

Dummy = OutTrap ("TestMems.","*")

"LISTD " TestPDS "M"

NumLines = TestMems.0 - 6

Say NumLines "Member names were found in" TestPDS
Dummy = OutTrap ("OFF")

NumTestRecs = TestMems.0 + 1
/* Clean up the array */
Do I =1 to 6 ; TestMems.I = "" ; End
Do I = 7 to TestMems.O
TestMems.I = strip(TestMems.I)
End
Return

/* List Members of ProdPDS */

Page [177]

Proc03:
/* Say "Reading "ProdPDS"..." */
Dummy = OutTrap ("ProdMems.","*")
"LISTD " ProdPDS "M"
NumLines = ProdMems.0 - 6
Say NumLines "Member names were found in" ProdPDS
Dummy = OutTrap ("OFF")

NumProdRecs = ProdMems.0 + 1
/* Clean up the array */
Do I =1 to 6 ; ProdMems.I = "" ; End
Do I = 7 to ProdMems.O
ProdMems.I = strip(ProdMems.I)
End
Return

Proc04:
TestCurrRec = 6; ProdCurrRec = 6;
Call ReadTest /* Read first record from TestPDS */
Call ReadProd /* Read first record from ProdPDS */
InTestOnly = 0; InProdOnly = 0; InBoth = 0;

Do Forever
/* Say "Comparing " TestMem "to" ProdMem */
If TestMem = ProdMem then do

If TestMem = "99999999" then Leave
If TestMem = " " then nop
Else do

InBoth = InBoth + 1

Call CompMembers /* Compare the members */
End
Call ReadTest /* Read next record from TestPDS */
Call ReadProd /* Read next record from ProdPDS */

End

Else If Testmem < ProdMem then do
InTestOnly = InTestOnly + 1
Say TestMem" in " TestPDS "but not in "ProdPds

Call ReadTest /* Read next record from TestPDS */
End
Else do
InProdOnly = InProdOnly + 1
Call ReadProd /* Read next record from ProdPDS */
End
End
Return
/* ____________ */
/* Compare the members, line for line */
Y —— */
CompMembers:
/* First, normalize the datasetnames */
If Left(TestPDS,1) = "'" then do

TestIPDSN = strip (TestPDS)

Page [178]

TestIPDSN = DelStr (TestIPDSN,1,1)
IDLen = length (TestIPDSN)
TestIPDSN = DelStr (TestIPDSN, IDLen, 1)

end
else
TestIPDSN = TestDSN
TestIPDSN = "'"| |TestIPDSN||" ("]| |TestMem]| |")""
If Left (ProdPDS,1) = "'" then do

ProdIPDSN = strip (ProdPDS)

ProdIPDSN = DelStr (ProdIPDSN,1,1)
IDLen = length (ProdIPDSN)

ProdIPDSN = DelStr (ProdIPDSN, IDLen, 1)

end
else
ProdIPDSN = ProdDSN
ProdIPDSN = "'" | |ProdIPDSN| |" (" | |ProdMem]| |")"'"

Address TSO
"Free fi(SYSUT1 SYSUT2 SYSPrint SYSIN)"
"Alloc Fi(SYSUT1l) Da("||TestIPDSN") SHR"
"Alloc Fi(SYSUT2) Da("||ProdIPDSN") SHR"
"Alloc FI(SYSPrint) DUMMY"
"Alloc FI(SYSIN) DUMMY"
"Call 'SYS1.LinkLib (IEBCOMPR) '"
RtrnCD = RC
If RtrnCD = 0 then

Say TestMem ||": The modules are identical"
Else

Say TestMem ||": The modules differ!"

Return

ReadTest:
TestCurrRec = TestCurrRec + 1;
If TestCurrRec > NumTestRecs then
TestMem = "99999999" /* "end of file" */
Else DO
TestMem = TestMems.TestCurrRec
/* Say "I just read from TEST: " TestMem */
End
Return

ReadProd:
ProdCurrRec = ProdCurrRec + 1;
If ProdCurrRec > NumProdRecs then
ProdMem = "99999999" /* "end of file" */
Else Do
ProdMem = ProdMems.ProdCurrRec
/* Say "I just read from PROD: " ProdMem */
End
Return

Page [179]

/* Finalization */

Proc99:
Say "In Test, not in prod:" InTestOnly
Say "In Prod, not in test:" InProdOnly
Say "In Both :" InBoth
Return

Page [180]

ConcatL - Concatenate Libraries
This command will concatenate a library to a current DDName's allocation.

If you wanted to add your Rexx Exec library to an existing SYSEXEC allocation, you

could do it two ways:

1) You could free SYSEXEC, and then reallocate all necessary libraries, including your
own. But that would make you dependent upon someone in Systems to tell you when
the normal allocation (all necessary libraries) changes.

2) You could simply add your library to the current concatenation, using this example.
This way, if the "necessary library" sequence changes, you will not be affected. Your
library will always be concatenated to that set.

To execute this example:
Exec ‘userid.REXX.EXEC (ConCatL)’ ‘SYSEXEC userid.REXX.EXEC’

/* ConCatL - Allocate a library to an exiting concatenation REXX */
Arg SearchDD LibToAdd

LibToAdd = "'"LibToAdd"'" /* Add some quotes */

Found = "NO"

Concat = "" /* Set to null in case DDName not allocated */
Dummy = OutTrap ("Sysoutline.","*") /* Start capture */
"ListALC Status"

Dummy = OutTrap ("OFF") /* Stop Capture */

Do I =1 to Sysoutline.O
/* Say "looking at " Sysoutline.I */

If SubStr(Sysoutline.I,3,8) = SearchDD then do
Found = "YES"
I2 =1 -1

DSN = SubStr (SysoutLine.I2,1,44)
DSN = strip (DSN)

Concat = "'" || DSN || "'" /* add apostrophe */
Leave T
End
End I
If Found = "YES" then do

Do I3 =1 + 1 to SysoutlLine.0 - 1 by 2
I4 = I3 + 1

If SubStr(Sysoutline.I4,3,8) <> " ",
then Leave
If SubStr(SysoutLine.I3,1,2) <> " " then do

DSN = Substr(Sysoutline.I3,1,45)
DSN = strip (DSN)
Concat = Concat || ™ '™ || DSN || "'"
End
End
End

"Allocate DDName ("SearchDD") SHR Reuse ",
"DSName ("Concat LibToAdd")"

Page [181]

Say "ConCatL added " LibToAdd "to" SearchDD"."

Page [182]

CPDSIX — Compare Two PDS Indexes

This exec will simply compare the directories (or indexes) of two PDS’s, and report the
differences. This tool can be a very helpful quality control tool.

/* CPDSIX - Compare PDS Indexes - REXX Exec */
ARG IPPDS1 IPPDS2

Call Proc0l /* Program Initialization */
Call Proc02 /* List First PDS Members to an Array */
Call Proc03 /* List Second PDS Members to an Array */

Call Proc04 /* Compare files now */

Call Proc99 /* Finalization */

Exit
2 ———— */
/* Called Procedures */
/* __ */
/* ____________ */

/* Program Initialization */

Y2 S— */

ProcQO1l:

Say; Say; Say;

Say "CPDSIX, Comparing..."
Say "PDS1: "IPPDSI1

Say "PDS2: "IPPDS2

Return
Y —— */
/* List Members of IPPDS1 */
Y —— */
Proc02:
/* Say "Reading "IPPDS1"..." */

Dummy = OutTrap ("PDS1Mems.","*")

"LISTD " IPPDS1 "M"

NumLines = PDS1Mems.0 - 6

Say NumLines "Member names were found in" IPPDS1
Dummy = OutTrap ("OFF")

NumPDS1Recs = PDS1Mems.0 + 1
/* Clean up the array */
Do I =1 to 6 ; PDSIMems.I = "" ; End
Do I = 7 to PDSI1Mems.O
PDS1Mems.I = strip (PDS1Mems.I)

End
Return
2 S —— *)
/* List Members of IPPDS2 */
2 — *)
Proc03:
/* Say "Reading "IPPDS2"..." */

Dummy = OutTrap ("PDS2Mems.","*")
"LISTD " IPPDS2 "M"
NumLines = PDS2Mems.0 - ©

Page [183]

Say NumLines "Member names were found in" IPPDS2
Dummy = OutTrap ("OFF")

NumPDS2Recs = PDS2Mems.0 + 1
/* Clean up the array */
Do I =1 to 6 ; PDS2Mems.I = "" ; End
Do I = 7 to PDS2Mems.0
PDS2Mems.I = strip (PDS2Mems.I)
End
Return

Proc04:
PDS1CurrRec = 6; PDS2CurrRec = 6;
Call ReadPDS1 /* Read first record from IPPDS1 */
Call ReadPDS2 /* Read first record from IPPDS2 */
InPDS10nly = 0; InPDS20nly = 0; InBoth = 0;

Do Forever
/* Say "Comparing " PDS1Mem "to" PDS2Mem */
If PDS1Mem = PDS2Mem then do

If PDS1Mem = "99999999" then Leave

If PDS1Mem = " " then nop

Else do

InBoth = InBoth + 1

End

Call ReadPDS1 /* Read next record from IPPDS1 */

Call ReadPDS2 /* Read next record from IPPDS2 */
End

Else If PDSlmem < PDS2Mem then do
InPDS10nly = InPDS10nly + 1
Say PDS1Mem" in PDS1 but not in PDS2"
Call ReadPDS1 /* Read next record from IPPDS1 */
End
Else do
InPDS20nly = InPDS20nly + 1
Say PDS2Mem" in PDS2 but not in PDS1"
Call ReadPDS2 /* Read next record from IPPDS2 */
End
End
Return

ReadPDS1:
PDS1CurrRec = PDS1CurrRec + 1;
If PDS1CurrRec = NumPDS1lRecs then

PDS1Mem = "99999999" /* "end of file"™ */
Else DO
PDS1Mem = PDS1Mems.PDS1CurrRec
/* Say "I just read from PDS1: " PDSIMem */
End
Return

Page [184]

ReadPDS2:
PDS2CurrRec = PDS2CurrRec + 1;
If PDS2CurrRec = NumPDS2Recs then

PDS2Mem = "99999999" /* "end of file"™ */
Else Do
PDS2Mem = PDS2Mems.PDS2CurrRec
/* Say "I just read from PDS2: " PDS2Mem */
End
Return
Y2 S */
/* Finalization */
Y2 S —— */
Proc99:

Say "In PDS1, not in PDS2:" InPDS1Only

Say "In PDS2, not in PDS1:" InPDS20nly

Say "In Both :" InBoth
Return

Page [185]

This command will add the JCL for an output disk DD statement. It is designed for JES2,

DD - Add a DD Statement

and will also generate a delete step.

/* DD -
ADDRESS
address
address

ISPF Edit
"ISREDIT"
"ISREDIT"
"ISREDIT"

Macro (REXX EXEC) */
"MACRO PROCESS"
" (XDSN)=DATASET"

" (XMEM) =MEMBER"

/* First get the user ID from a list */

UserID sysvar (SYSUID)

UserName = "an unknown TSO user"

If UserID = "GRUND" then UserName = "David Grund"
Say "UserID =" UserID "; Name =" UserName

OurDSN UserID| |".whatever"

/* Now create the JCL statements */

Jol =
Jgozl =
Jo022 =
Jo03 =
Jo4 =
Jos =
Joe
Jo7 =
Jos
Jo9
J10
Jl1l =
Jl3 =

"//*"
"//*
"//* STEPNN1
"//STEPNN1
"//DELDS
"//

u//*u

"//* Output
"//filenam
"//

"//

"//

- IEFBR14 - DELETE OUTPUT DATASETS"
EXEC PGM=IEFBR14"
DD DSN="||OQurDSN||","

DISP=(MOD, DELETE) , UNIT=SYSDA, SPACE= (TRK, (0))"

file description"

DD DSN="||OQOurDSN]||","

DISP= (NEW, CATLG, DELETE), "

UNIT=SYSDA, SPACE= (080, (123,123),RLSE), AVGREC=U, "
DCB= (DSORG=PS, RECFM=FB, LRECL=080, BLKSIZE=0) "

/* Now insert them into the currently-edited member */

address
address
address
address
address
address
address
address
address
address
address
address
address

"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"

"LINE_AFTER 0 =" "'"Jol"'"
"LINE_AFTER 1 =" "'"J021""J0o22"'"
"LINE_AFTER 2 =" "'"Jo3"'"
"LINE_AFTER 3 =" "'"J021""J022"'"
"LINE_AFTER 4 =" "'"Jo4"'"
"LINE_AFTER 5 =" "'"Jo5"'"
"LINE_AFTER 6 =" "'"J06"'™"
"LINE_AFTER 7 =" "'"Jo7"'"
"LINE_AFTER 8 =" "'"Jog"'"
"LINE_AFTER 9 =" "'"Joo"'"
"LINE_AFTER 10 =" "'"Jlo"'"
"LINE_AFTER 11 =" "'"gJlln"'"
"LINE_AFTER 12 =" "'"J13"'"

/* NOW PUT ASTERISKS IN COL 71 IN LINES 4 THRU 8 */

ADDRESS
ADDRESS
ADDRESS
ADDRESS

ADDRESS

"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"

"ISREDIT"

"LABEL 2 = .LSTART "

"LABEL 3 = .LEND "

"CHANGE " ' '*' 71 _LSTART .LEND ALL"
"RESET"

"Cursor = 1 0"

Page [186]

address

wo

address

w

address

address

w

"ISREDIT" "LINE AFTER O NoteLine",
This is the delete step --—————--—————-————————————
"ISREDIT" "LINE AFTER 7 = NoteLine",
The output DD specification follows —---—-—-———----———-
"ISREDIT" "LINE AFTER 13 NoteLine",

"ISREDIT" "LINE AFTER 13 NoteLine",
Constructed especially for " || UserName "'"

Page [187]

DELDUPS - Delete Duplicate Records

/* DelDups - Delete Duplicate Lines REXX Exec */
ADDRESS ISREDIT
'MACRO (begcol endcol)'

If Begcol = '?' then do
zedsmsg = 'DelDups begcol,endcol’
zedlmsg = 'Command syntax: DelDup beginning col, ending col'
signal quitme
end
numcheck = DATATYPE (begcol, N) /* Determine if any parms have */
If NumCheck /= 1 then BegCol = 1 /* been passed. */
numcheck = DATATYPE (endcol, N)
If NumCheck /= 1 then 'ISREDIT (endcol) = LRECL'
'"ISREDIT (currline) = LINENUM .ZFIRST' /* save starting record # */
'ISREDIT (lastline) = LINENUM .ZLAST' /* save ending record # */
'ISREDIT (cl,cc) = CURSOR' /* save cursor position */
DupCnt = 0
Do currline = 1 to lastline -1
If Currline > (LastlLine - 1) then leave
'ISREDIT (linel) = LINE' currline
linel = substr(linel,begcol, (endcol - begcol) + 1)
nextline = currline + 1
'ISREDIT (line2) = LINE' nextline /* get next record */
line2 = substr(line2,begcol, (endcol - begcol) + 1)
If linel == line2 then do
DupCnt = DupCnt + 1
"ISREDIT LABEL " currline " = .A"
"ISREDIT LABEL " nextline " = .B"
"ISREDIT Delete " nextline
currline = currline - 1 ; lastline = lastline - 1
end
end

zedsmsg = DupCnt 'DUPS Deleted’

zedlmsg = DupCnt 'duplicate lines were deleted'
Quitme:

ADDRESS ISPEXEC

'SETMSG MSG (ISRZ000) '

EXIT O

Page [188]

DURATION - Time an EXEC

This Rexx exec can be modified to time the processing of a command. It's a good idea to
do this is some of the longer-running execs, or to brag about how fast your exec can accomplish
something!

/* Duration - Rexx EXEC */

/* This command will test the code to perform a calculation
of command duration */

STime = Time (E) /* Start time */

Say "I am waiting for you to hit enter!"
Pull Answer

ETime = Time (E) /* End Time */
Duration = ETime - STime

Say "This command took" Duration "seconds!"

Page [189]

FindMem - Find a Member in a Concatenation

This Rexx exec will search a concatenated set of libraries for a specific member name.
This is useful for when you want to know exactly which library an ISPF panel or a Rexx Exec is
being executed from.

This command can also be executed in batch to look for copybooks or load modules in a
concatenation.

/* FindMem - Find a Member in a Concatenation REXX */
ARG OurDD OurMem
Call ProcOl /* Initialization */
Call Proc02 /* ListA to an array */
Call Proc03 /* Adjust the array */
Call Proc04 /* Remove 'KEEP' lines */
/* Call ProcQ05 */ /* Write the array to a dataset and view it */
Call ProcO6 /* Isolate the DD */
Call ProclO /* Now search each PDS */
Exit
2 S — */
/* Proc0l - Initialization */
2 S — */
ProcO1l:
If OQurDD = "" | OurMem = "" then do
Say "Command syntax: FindMem DDName MemName"
Exit (16)
End

Return
2 S — */
/* Proc02 - ListA to an array */
2 S — * /
Proc02:

Dummy = OutTrap ("output line.","*")
"LISTA SY ST"

NumLines = OutPut Line.0

/* Say NumLines "lines were created" */
Dummy = OutTrap ("OFF")

Return
/* ___________ */
/* Proc03 - Adjust the array */
2 * /
Proc03:
/* Move the line with the DDNAME above the first datasetname
that it is concatenated to. It is currently below. */
Do I = 1 to NumLines

Coll 2 = SubStr(OutPut Line.I,1,2)
Col3 = SubStr (OutPut Line.I,3,1)
Coll2 15 = SubStr (OutPut Line.I,12,4)

If Coll 2 ="' ' &,
Col3 /=" " &,
Coll2 15 = 'KEEP' then do
J=1-1
SaveLine = OutPut Line.I

Output Line.I OutPut Line.J

Page [190]

Output Line.J = Saveline
end
end
Return

ProcQ04:
J =20 /* Output array counter */
Do I = 1 to NumLines
ThisLine = strip(Output Line.I)
If (left(ThisLine,4) = 'KEEP') | ,
(left (ThisLine,8) = 'TERMFILE') then nop=nop
Else do
J =J + 1; NewArray.J = OutPut Line.I
End
End
NewArray.0 = J
Return
/* ___________ */

Proc05:
"Delete FindMem.list"
"Allocate DD(FMList) DA (FindMem.List) new space(l 1) tracks",
"LRECL (80) Block (5600) recfm(f b) RETPD(0)"

"ExecIO" NewArray.0 "DiskW FMList (STEM NewArray. FINIS"
"Free DDNAME (FMList) DA (FindMem.List)"

ADDRESS "ISPEXEC" "View Dataset (FindMem.List)"

Return
2 * /
/* Proc06 - Isolate the DD */
2 * /
Proc06:
J =20 /* DSNArray counter */
DDName = ''
Do I = 1 to NewArray.O
If left (NewArray.I,2) =" ' then
DDName = left (strip (NewArray.I), 8)
else do
ThisRec = DDName| |strip (NewArray.I)
J = J + 1; DSNArray.J = ThisRec
end
End

DSNArray.0 = J

/* Do I = 1 to DSNArray.O
Say DSNArray.I
End */
Return

Page [191]

/* Procl0 - Search each DSN for our member name */

ProclO:
DDFound = 0 ; MemFnd = 0
Do I = 1 to DSNArray.O
If left (DSNArray.I,8) = OurDD then do
DDFound = DDFound + 1
DSN = strip(substr (DSNArray.i,9,63))
/* Say "Looking through DSN" DSN */
Call ProclOl /* Check this DSN */

End
End
Say "All together, I found "DDFound" DSN's allocated to DDName "OurDD
TWord = 'times'; If MemFnd = 1 then TWord = 'time'
Say "I found member "OurMem MemFnd TWord"."
Return
2 * /
/* Procl0l - Search this DSN for our member name */
/* ___________ */
ProclO01l:
/* First make sure this dataset is a PDS */
RC = ListDSI("'"DSN"'" Directory)

If RC > 0 then do
Say 'Error processing 'DSN
Say SYSMSGLVL1; Say SYSMSGLVL2 ; Say
Return
End
If SYSDSORG = "PO" then do
Dummy = OutTrap ("PDSLines.","*")
"LISTD '"DSN"' M"
NumLines = PDSLines.0
Dummy = OutTrap ("OFF")
Do K = 6 to PDSLines.O0
/* Say "The line is: "PDSLines.K */
If Pos (OurMem, PDSLines.K) > 0 then do
Say "I found member "OurMem" in "DSN
MemFnd = MemFnd + 1
End
End
End
Else
Say "Dataset "DSN" is not a PDS."
Return

Page [192]

FixJCL - Fix Job Control

FixJCL is a Rexx exec that will read a set of Mainframe JCL, and make certain format
changes.

Granted that these format changes are to personal style and specifications: it puts the
datasetname on the first line, the disposition parameters on the second line (unless they are
short), the space parameters together on the next line, the DCB parameters on the next, and
anything else on the last.

The beauty of this exec is that it parses the JCL, and isolates just about every "common"
JCL field, so if you didn't want to create finished, or "fixed" JCL, you could do whatever
processing you wanted. Additionally, the code is all there, so you could make any desired
enhancements.

The exec first reads the JCL into an array, parses and identifies it, and then creates a file
of fields. The code to catalogue this particular file has been commented out, but for testing or
development, you would want to open this code back up.

That array is then read, and the final JCL file is created.

Please note that the objective of this exec is twofold: to present a usable tool, and to
provide the code to enhance the tool. There is a lot of room for improvement in this particular
tool. It isn't meant to be a finished and shiny product. It is meant to accomplish something very
useful, and allow the user to make any desired improvements or enhancements to something that
has a good, solid base.

The code, in its entirety, follows:

/* FixJCL - Create a Fixed File of JCL - REXX Exec */
ARG IPDSN

Call ProcO1 /* Program initialization */
Call ProclO /* Parse the JCL */
Call Proc30 /* Write the control card array */
Call Proc40 /* Write the fixed JCL */
Call ProcEOJ /* EOJ Processing */
Exit

Y2 S —

Output record layout: */
Cols 1-3: Record Type
Cols 4-72: text

1-- JOBCARD

101 Jobname

102 Accounting Info

103 Routing Info

104 MSGLEVEL

105 MSGCLASS

106 CLASS

Page [193]

7 NOTIFY

9 Other info
- STEP/EXEC

1 Stepname

2 PGM= or procname
3 PARM

4 COND

5 REGION

- DD Statement
1 DDName

2 SYSOUT

3 'DUMMY'

4 DSN

5 DISP

6 UNIT

7 SPACE

8 AVGREC

9 DCB first positional
0 DCB DSORG

1 DCB RECFM

2 DCB LRECL

3 DCB BLKSIZE
4 LABEL

5 COPIES

6 DEST

7 HOLD

8 TRTCH

9 OUTPUT

0 VOL=SER

1 FREE

1 Data

1 COMMENT

1 OUTPUT

1 Unknown

ProcQO1l:

"DelStack"

If IPDSN = "" then do
Say "Command syntax: FixJCL DSN"
Exit

end

Say "FixJCL Working on " IPDSN ": ",
sysvar (SYSUID) Date(U) Time() "..."

Call ProcO1l1l /* Read the JCL into an array
ExpectingContinuation = "N"

OpCtr =
OData.O0
Spaces = "

0
= OpCtr /* Create the output array */

"

Return

Page [194]

*/

ProcO1l1l:

"Alloc DDN(InFile) DSN("IPDSN") SHR"

If RC <> 0 then do
Say "I could not allocate "IPDSN". Sorry."
Exit

end

"ExecIO * DiskR InFile (Stem JCL. Finis"

"Free FI(InFile)"

Say "I read "JCL.O" lines of JCL into the array."

Return

Y2 S —— */

/* Parse the JCL */
/* ____________ */

/* This routine will parse the JCL, and create an array of
control cards representing the JCL values

ProclO:
Do I = 1 to JCL.O
Record = strip(left (JCL.I,72)) /* Look at only cols 1-72 */
Call Proc20 /* Parse/identify the stmt */
If RecID = "J" then Call Proc230 /* Job card */
If RecID = "E" then Call Proc240 /* Exec card */
If RecID = "D" then Call Proc250 /* DD card */
If RecID = "A" then Call Proc260 /* data card */
If RecID = "C" then Call Proc270 /* Comment card */
If RecID = "O" then Call Proc280 /* Output Card */
If RecID = "U" then Call Proc290 /* Unknown card */
End
Return
Y2 S —— */
/* Parse and identify the JCL Statement */
/* ____________ */
Proc20:
Parse Var Record Piecel Piece2 Piece3
If ExpectingContinuation = "Y" then Return
RecID = "U" /* Unknown */
If left(Record,1l) /= "/" +then RecID = "A" /* Data */
If left(Record,3) = "//*" then RecID = "C" /* Comment */
Else
If left (Record,2) = "//" then do
If strip(Piece2) = "JOB"™ then RecID = "J" /* Job card */
If strip(Piece2) = "EXEC" then RecID = "E" /* Execute card */
If strip(Piece2) = "DD" then RecID = "D" /* DD card */
If strip(Piece2) = "OUTPUT" then RecID = "O" /* Output card

End
/* Say "The following record:"
Say Record
Say "has been identified as "RecID */

Return

/* ____________ */

/* Process Job Card */
/* ____________ */

Page [195]

*/

Proc230:
/* If this is the first card of a set, then the variable
ExpectingContinuation will be "N". For all other cards, it

will be 'Y'. */
If ExpectingContinuation = "N" then JobCard = Record
Else Jobcard = Jobcard]| |Piece?2
If right(Record,1l) = ',' then ExpectingContinuation = "Y"
Else do /* We have read the final job card */
ExpectingContinuation = "N"
Call Proc2301 /* Parse the job statement */
Call Proc2302 /* Write them to the array */
End
Return
2 — */
/* Parse the Job Statement */
Y —— */
Proc2301:
Parse Var Jobcard Piecel Piece2 Piece3
V101l = DelStr (Piecel,1,2) /* Job name */
Parse var Piece3 V102 "," Piece3 /* Job accounting info */
If left(Piece3,1) = "'" then Piece3 = DelStr (Piece3,1,1)
Parse var Piece3 V103 "'" Piece3 /* Routing info */
Vlo4 = 11 11 ; Vlo5 = mn ; VlOG = 11 "; Vlo7 = mn ; V199 = mn

Parse var Piece3 pPJ1 ","™ PJ2 "," PJ3 ","™ pPJg4 "," ,
pPJ5 "," PJ6 "," PJ7 "," PJ8
Do J =1 to 8
ThisArg = Value (PJ]| |J)

If left(ThisArg,9) = "MSGLEVEL=" then do
V104 = right (ThisArg,1)
ThisPos = Index (Piece3, ThisArqg) /* Del */
Piece3 = DelStr (Piece3,ThisPos,length (ThisArg) +1)
End
If left(ThisArg,9) = "MSGCLASS=" then do
V105 = right (ThisArg,1)
ThisPos = Index (Piece3, ThisArqg) /* Del */
Piece3 = DelStr (Piece3,ThisPos,length (ThisArg) +1)
End
If left(ThisArg,6) = "CLASS=" then do
V106 = right (ThisArg,1)
ThisPos = Index (Piece3, ThisArqg) /* Del */
Piece3 = DelStr (Piece3,ThisPos,length (ThisArg) +1)
End
If left(ThisArg,7) = "NOTIFY=" then do
V107 = DelStr (ThisArg,1,7)
ThisPos = Index (Piece3, ThisArqg) /* Del */
Piece3 = DelStr (Piece3,ThisPos,length(ThisArg)+1)
End
End
V199 = Vv199| |Piece3 /* Whatever is left */
If left(v1i99,1) = "," then V199 = DelStr(v199,1,1)
If right(v199,1) = "," then V199 = DelStr(V199,length(Vv199),1)
Return

Page [196]

Y * /

Proc2302:
OpCtr = OpCtr + 1 ; OData.OpCtr = "101"||V101
OpCtr = OpCtr + 1 ; OData.OpCtr = "102"||V102
OpCtr = OpCtr + 1 ; OData.OpCtr = "103"|]|V103
OpCtr = OpCtr + 1 ; OData.OpCtr = "104"||V104
OpCtr = OpCtr + 1 ; OData.OpCtr = "105"||V105
OpCtr = OpCtr + 1 ; OData.OpCtr = "106"||V106
OpCtr = OpCtr + 1 ; OData.OpCtr = "107"||V107
OpCtr = OpCtr + 1 ; OData.OpCtr = "199"||V199

Return

Y2 */

/* Execute Card */

Y * /

Proc240:

/* If this is the first card of a set, then the variable
ExpectingContinuation will be "N". For all other cards, it

will be 'Y'. */
If ExpectingContinuation = "N" then ExecCard = Record
Else ExecCard = ExecCard]| |Piece2
If right(Record,1l) = ',' then ExpectingContinuation = "Y"
Else do /* We have read the final card */
ExpectingContinuation = "N"
/* Say "The entire execute statement follows" */
/* Say ExecCard */
Call Proc2401 /* Parse the exec statement */
Call Proc2402 /* Write them to the array */
End
Return
/* ____________ */
/* Parse the Exec Statement */
Y —— */
Proc2401:

/* With the job statement, we parse the whole thing at once.
We cannot do that with the Exec, because of operands that begin in
a left parenthesis, like the COND. Therefore, we have to

"break off" a piece at a time. */
v402 = " " ; V403 = ""; V404 = "" ; V405 = "";
V499 = """ /* Init vars */

Parse Var ExecCard Piecel Piece2 Piece3
V401 = DelStr (Piecel,1,2) /* Step name */
Piece3 = strip(Piece3)

Do 10 /* There shouldn't be more than this */
If left(Piece3,1) = "," then Piece3 = DelStr (Piece3,1,1)
If left(Piece3,4) = "PGM=" then do
Parse Var Piece3 V402 "," Piece3
V402 = right (V402,length(V402)-4)
End

Page [197]

If left(Piece3,6) = "PARM='" then do
Piece3 = DelStr (Piece3,1,6)

Parse Var Piece3 V403 "'" Piece3
End
If left(Piece3,6) = "PARM=(" then do
Piece3 = DelStr (Piece3,1,6)
Parse Var Piece3 V403 ")" Piece3
End
If left(Piece3,5) = "PARM=" then do

Parse Var Piece3 V403 "," Piece3
V403 = right (V403,length(v403)-5)

End
If left(Piece3,6) = "COND=(" then do
Piece3 = delstr (Piece3,1,6)
Parse Var Piece3 V404 ")" Piece3
End
If left(Piece3,7) = "REGION=" then do

Parse Var Piece3 V405 "," Piece3
V405 = right (V405, length (V405)-7)

End
End
V499 = V499| |Piece3 /* Whatever is left */
Return
/* ____________ */
/* Write the job information to the array */
/* ____________ */
Proc2402:
OpCtr = OpCtr + 1 ; OData.OpCtr = "401"||V401
OpCtr = OpCtr + 1 ; OData.OpCtr = "402"||V402
OpCtr = OpCtr + 1 ; OData.OpCtr = "403"||V403
OpCtr = OpCtr + 1 ; OData.OpCtr = "404"||Vv404
OpCtr = OpCtr + 1 ; OData.OpCtr = "405"||V405
OpCtr = OpCtr + 1 ; OData.OpCtr = "499"||V499
Return
/* ____________ */
/* DD Card */
Y * /
Proc250:

Re

/* If this is the first card of a set, then the variable
ExpectingContinuation will be "N". For all other cards, it

will be 'Y'. */
If ExpectingContinuation = "N" then DDCard = Record
Else DDCard = DDCard| |Piece?2
If right(Record,1l) = ',' then ExpectingContinuation = "Y"
Else do /* We have read the final card */
ExpectingContinuation = "N"
/* Say "The entire DD statement follows" */
/* Say DDCard */
Call Proc2501 /* Parse the exec statement */
Call Proc2502 /* Write them to the array */
End
turn
____________ */

Page [198]

/* Parse the DD Statement */

Proc2501:
/* With the job statement, we parse the whole thing at once.
We cannot do that with the DD, because of operands that begin in
a left parenthesis. Therefore, we have to "break off" a piece

at a time. */

V501= ""; V502= ""; V503= ""; V504= ""; V505= "";

v506= ""; Vv507= ""; Vv508= ""; V509= ""; V510= "";

V511= ""; V512= ""; V513= ""; V514= ""; V515= "";

V516= ""; V517= ""; V518= ""; V519= ""; V520= "";

v521= "";

DCBStmt= "";

Vv599= "" /* Init vars */

Parse Var DDCard Piecel Piece2 Piece3

V501 = DelStr (Piecel,1,2) /* DD Name */
Piece3 = strip(Piece3d)
Do 20 /* There shouldn't be more than this */
If left(Piece3,1) = "," then Piece3 = DelStr (Piece3,1,1)
If left(Piece3,8) = "SYSOUT=(" then do
Piece3 = DelStr (Piece3,1,8)
Parse Var Piece3 V502 ")" Piece3
End
If left(Piece3,7) = "SYSOUT=" then do

Parse Var Piece3 V502 "," Piece3
V502 = right (V502, length(V502)-7)

End

If left(Piece3,5) = "DUMMY" then do
Parse Var Piece3 V503 "," Piece3

End

If left(Piece3,4) = "DSN=" then do

Parse Var Piece3 V504 "," Piece3
V504 = right (V504,length(Vv504)-4)
End
If left(Piece3,7) = "DSNAME=" then do
Parse Var Piece3 V504 "," Piece3
V504 = right (V504,length(Vv504)-7)

End
If left(Piece3,6) = "DISP=(" then do
Piece3 = DelStr (Piece3,1,06)
Parse Var Piece3 V505 ")" Piece3
End
If left(Piece3,5) = "DISP=" then do

Parse Var Piece3 V505 "," Piece3
V505 = right (V505, length (V505)-5)
End
If left(Piece3,5) = "UNIT=" then do
Parse Var Piece3 V506 "," Piece3
V506 = right (V506, length (V506)-5)
End
If left(Piece3,6) = "SPACE=" then do
Piece3 = DelStr (Piece3,1,06) /* Delete the string */
Call Proc810; V507 = Result /* Call nest isolator */

Page [199]

End

If left(Piece3,5) = "DCB=(" then do

Piece3 = DelStr (Piece3,1,5)

Parse Var Piece3 DCBStmt ")" Piece3

Call Proc2509 /* Parse the DCB statement */
End
If left(Piece3,4) = "DCB=" then do

Parse Var Piece3 DCBStmt "," Piece3

DCBStmt = right (DCBStmt, length (DCBStmt) -4)

Call Proc2509 /* Parse the DCB statement */
End
If left(Piece3,6) = "LABEL=" then do

Parse Var Piece3 V514 "," Piece3

V514 = right(V514, length (V514)-6)

End
If left(Piece3,7) = "COPIES=" then do
Piece3 = DelStr (Piece3,1,7) /* Delete the string */
Call Proc810; V515 = Result /* Call nest isolator */
End
If left(Piece3,5) = "DEST=" then do

Parse Var Piece3 V516 "," Piece3
V516 = right (V516,length(V516)-5)

End

If left(Piece3,5) = "HOLD=" then do
Parse Var Piece3 V517 "," Piece3
V517 = right (V517,length(V517)-5)

End

If left(Piece3,6) = "TRTCH=" then do
Parse Var Piece3 V518 "," Piece3
V518 = right (V518,length(Vv518)-6)

End

If left(Piece3,8) = "OUTPUT=(" then do
Piece3 = DelStr (Piece3, 1, 8)
Parse Var Piece3 V519 ")" Piece3

End

If left(Piece3,7) = "OUTPUT=" then do

Parse Var Piece3 V519 "," Piece3
V519 = right (V519,length (V519)-7)
End
If left(Piece3,8) = "VOL=SER=" then do
Parse Var Piece3 V520 "," Piece3
V520 = right (V520,length(Vv520)-8)
End
If left(Piece3,5) = "FREE=" then do
Parse Var Piece3 V521 "," Piece3
V521 = right (V521,length(Vv521)-5)
End
End
V599 = V599 |Piece3 /* Whatever is left */

/* Impose my personal styles upon the values here */

If (left(v505,6) = ",CATLG") | ,
(left (v505,5) = ",PASS") then V505 = "NEW"||V505
Return
/* ____________ */

/* Write the job information to the array */

Page [200]

Proc2502:
OpCtr = OpCtr
OpCtr = OpCtr
OpCtr = OpCtr
OpCtr = OpCtr
OpCtr = OpCtr
OpCtr = OpCtr
OpCtr = OpCtr
OpCtr = OpCtr
OpCtr = OpCtr

; OData.OpCtr = "501"||V501
; OData.OpCtr = "502"||V502
; OData.OpCtr = "503"||V503
; OData.OpCtr = "504"||V504
; OData.OpCtr = "505"||V505
; OData.OpCtr = "506"||V506
; OData.OpCtr = "507"| V507
; OData.OpCtr = "508"||Vv508
; OData.OpCtr = "509"||V509

B e i i o S e S S T T
e e e e e e e e e e e e e

OpCtr = OpCtr ; OData.OpCtr = "510"]||V510
OpCtr = OpCtr ; OData.OpCtr = "511"||V511
OpCtr = OpCtr ; OData.OpCtr = "512"||V512
OpCtr = OpCtr ; OData.OpCtr = "513"||V513
OpCtr = OpCtr ; OData.OpCtr = "514"||Vv514
OpCtr = OpCtr ; OData.OpCtr = "515"||V515
OpCtr = OpCtr ; OData.OpCtr = "516"||V516
OpCtr = OpCtr ; OData.OpCtr = "517"||V517
OpCtr = OpCtr ; OData.OpCtr = "518"||Vv518
OpCtr = OpCtr ; OData.OpCtr = "519"||V519
OpCtr = OpCtr ; OData.OpCtr = "520"||V520
OpCtr = OpCtr ; OData.OpCtr = "521"||V521
OpCtr = OpCtr ; OData.OpCtr = "599"||V599

Return

/* ____________ */

/* Parse the DCB Statement */

Y * /

Proc2509:

Parse Var DCBStmt DCBTemp "," DCBStmt
If Pos('=',DCBTemp) = 0 then V509 = DCBTemp /* Model DSCB */

Else DCBStmt = DCBTemp]| |"," | |DCBStmt

Do 20 /* This should be more than enough */

If left(DCBStmt,6) = "DSORG=" then do
Parse Var DCBStmt V510 "," DCBStmt
V510 = right (V510, length (V510)-6)

End

If left(DCBStmt,6) = "RECFM=" then do
Parse Var DCBStmt V511 "," DCBStmt
V511 = right (V511,length(V511)-6)

End

If left(DCBStmt,6) = "LRECL=" then do
Parse Var DCBStmt V512 "," DCBStmt
V512 = right (V512,length(V512)-6)

End

If left (DCBStmt,8) = "BLKSIZE=" then do
Parse Var DCBStmt V513 "," DCBStmt
V513 = right (V513,1length(V513) -8)

End
End
Return
/* ____________ */
/* Data card */
/* ____________ */

Page [201]

Proc260:

OpCtr = OpCtr + 1 ; OData.OpCtr = "601"||JCL.I
Return
Y2 */
/* Comment Card */
Y2 */
Proc270:
OpCtr = OpCtr + 1 ; OData.OpCtr = "701"||Record
Return
2 */
/* Output Card */
Y * /
Proc280:
OpCtr = OpCtr + 1 ; OData.OpCtr = "801"||Record
Return
Y * /
/* Unknown card */
/* ____________ */
Proc290:
OpCtr = OpCtr + 1 ; OData.OpCtr = "901"||Record
Return
/* ____________ */
/* Write the control card file */
Y * /
Proc30:

OData.0 = OpCtr

ViewData = false
If ViewData = true then do
OPDSN = FixJCL.Data
"Delete "OPDSN
"Allocate DD(OutFile) DA ("OPDSN") new space(l 1) tracks",
"LRECL (80) Block(6160) recfm(f b) RETPD(0)"

"ExecIO" OData.0 "DiskW OutFile (STEM OData. FINIS"
"Free DDNAME (OutFile)"

Say OpCtr "Records written to "OPDSN

ADDRESS "ISPEXEC" "View Dataset ("OPDSN") "

end
Return
/* ____________ */
/* Write the fixed JCL */
Y2 S —— */
Proc40:
Call Proc401 /* Create the Fixed JCL array
Call Proc402 /* Write the array to disk
Return
Y2 S —— */
/* Create the Fixed JCL Array */
/* ____________ */
Proc401l:

Page [202]

*/
*/

OJCLCtr = 0

Do I = 1 to OData.O
/* Say "Proc401;
RecClass =
RecID
Text =
If (RecID = 401)

(RecID = 701)

/* Write the

i/p=" OData.I */

left (Obhata.I, 1)
= left (OData.I, 3)
DelStr (ODhata.I,1,3)

| (RecID =
| (RecID

501) |
801) |

(RecID
(RecID

previous recordset */

601) |
901)

4

then do

If LastClass = "1" then Call Proc40121 /* Job card */
If LastClass = "4" then Call Proc40124 /* Step/Exec */
If LastClass = "5" then Call Proc40125 /* DD Statement */
End
LastClass = RecClass
If Text /= "" then do
/* Set values */
If RecClass = "1" then Call Proc40111 /* Job card */
If RecClass = "4" then Call Proc40114 /* Step/Exec */
If RecClass = "5" then Call Proc40115 /* DD Statement */
End
If RecClass = "o6" | , /* Data: write ALL records */
RecClass = "7" | , /* Comment: write ALL records */
RecClass = "8" | , /* Output: write ALL records */
RecClass = "9" then do /* Unknown: write ALL records */
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = Text
Iterate
End
End
/* Write the final class; it's sitting in core */
LastClass = left (OData.OJCLCTR, 1)
If LastClass = "1" then Call Proc40121 /* Job card */
If LastClass = "4" then Call Proc40124 /* Step/Exec */
If LastClass = "5" then Call Proc40125 /* DD Statement */
If LastClass = "7" then Call Proc40127 /* Comment */
Return
Y2 S —— */
/* Clear Values */
/* ____________ */
ClearValues:
V101=" "; V102=" "; V103=" "; V104=" "; V105=" "
V106=" "; V107=" "; V199=" ";
V401=" "; V402=" "; V403=" "; V404=" "; v405=" "
v499="";
V501=""; V502=""; V503=""; V504=""; V505=""
v506=""; Vv507=""; Vv508=""; v509=""; Vv510=""
v511=""; v512=""; V513=""; V514=""; y515=""
Vv516=""; Vv517=""; Vv518=""; Vv519=""; v520=""
v521="";
v599="";
SOLine = ""; USLine = ""; DCBTemp = "" ; DDLine4 = ""
Return
/* ____________ */

Page [203]

/* Process Job card */

Y2 */
Proc40111:
If RecID = "101" then V101l = Text
If RecID = "102" then V102 = Text
If RecID = "103" then V103 = Text
If RecID = "104" then V104 = "MSGLEVEL="| |Text
If RecID = "105" then V105 = "MSGCLASS="||Text
If RecID = "106" then V106 = "CLASS="||Text
If RecID = "107" then V107 = "NOTIFY="]| |Text
If RecID = "199" then V199 = Text
Return
Y * /
/* Process Step/Exec card */
Y2 * /
Proc40114:
If RecID = "401" then V401 = Text
If RecID = "402" then V402 = "PGM="||Text
If RecID = "403" then V403 = "PARM='"Text"'"
If RecID = "404" then V404 = "COND=("Text")"
If RecID = "405" then V405 = "REGION="| |Text
If RecID = "499" then V499 = Text
Return
2 * /
/* Process DD Card */
Y * /
Proc40115:
If RecID = "501" then V501 = Text
/* Construct the SYSOUT line */
If RecID = "502" then do
If Text = "," then Text = "(,)"
V502 = "SYSOUT="Text
SOLine = SOLine]| |V502
End
If RecID = "519" then do
If Pos(",",Text) > 0 then Text = " ("Text")"
SOLine = SOLine",OUTPUT="Text
End
If RecID = "521" then do
If Pos(",",Text) > 0 then Text = " ("Text")"
SOLine = SOLine",FREE="Text
End
If RecID = "503" then V503 = Text
If RecID = "504" then V504 = "DSN="Text
If RecID = "505" then do
If Pos(',',Text) = 0 then V505 = "DISP="Text
else V505 = "DISP=("Text")"
End

/* Construct the UNIT and SPACE line */
If RecID = "506" then USLine = USLine"UNIT="Text
If RecID = "507" then USLine USLine", SPACE="Text

Page [204]

If RecID = "508" then USLine

USLine",AVGREC="Text

If RecID = "520" then USLine = USLine",VOL=SER="Text
If left(USLine,1) = "," then USLine = DelStr (USLine,1,1)
If RecID = "509" then DCBTemp = DCBTemp]| | Text
If RecID = "510" then DCBTemp = DCBTemp",DSORG="Text
If RecID = "511" then DCBTemp = DCBTemp",RECFM="Text
If RecID = "512" then DCBTemp = DCBTemp", LRECL="Text
If RecID = "513" then DCBTemp = DCBTemp",BLKSIZE="Text
If left(DCBTemp,1l) = "," then DCBTemp = DelStr (DCBTemp,1,1)
/* Construct the "DD Line 4" */
If RecID = "514" then DDLined4 = DDLined4"LABEL="Text
If RecID = "515" then DDLine4 = DDLined",COPIES="Text
If RecID = "516" then DDLined4 = DDLined4",DEST="Text
If RecID = "517" then DDLined4 = DDLined4",HOLD="Text
If RecID = "518" then DDLine4 = DDLined4",TRTCH="Text
If left(DDLine4,1) = "," then DDLined4 = DelStr (DDLine4,1,1)
If RecID = "599" then V599 = Text
Return
Y * /
/* Write the Job card */
/* ____________ */
Proc40121:
V101 = left (V101l| |spaces, 8)
Jci1 = "//"v1i01" JOB " | |Vv102"™,'"v1iQ3""',"
Jcz2 = "// "v1i04","v1i05","v1i0e6","V107
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1
If V199 = "" then do
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC2
End
Else do
Jgcz2 = gcz2||","
Jc3 = "// "V199
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC2
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC3
End
Call ClearValues;
Return
Y * /
/* Write the Step/Exec card */
/* ____________ */
Proc40124:
V401l = left(v401l]| |spaces, 8)
JC1l = "//"Vv401" EXEC "||V402
If v404 /= "" then JCl1 = JC1","V404
If v405 /= "" then JCl1 = JC1","V405
If v403 = "" then do
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1
end
else do /* There IS a parm field */

if (length(JCl) + 1 + length(Vv403)) < 72 then do /* same line */
JCcl = Jc1i","v403
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1

Page [205]

end

else do
Jcir = gJgcit||","
Jgcz = "// "vV403

OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC1

OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = JC2
End
End
Call ClearValues;
Return
2 */
/* Write the DD Card */
Y * /
Proc40125:
Cl:""; C2:""; C3:""; C4:""; C5:""; Cce=""
V501 = left(V501]| |spaces, 8) /* DDName */

Cl = strip("//"Vv501" DD "SOLine| |V503]|V504)

/* There is almost NEVER a good reason to say DISP=(OLD,DELETE) .
At UMB, OLD,DELETE is used too frequently. Therefore,

impose my personal preferences and replace those. */

If left(v505,9) = "DISP=(OLD" then

V505 = "DISP=SHR"||right (V505,1length(V505)-9)
If left(v505,8) = "DISP=OLD" then

V505 = "DISP=SHR"||right (V505,length (V505) -8)
If left(v505,15) = "DISP=SHR,DELETE" then

V505 = "DISP=SHR"
If Pos(',',DCBTemp) > 0 then DCBTemp = "DCB=("DCBTemp")"

If ((length(Cl) + 1 + length(Vv505)) < 72) & ,

(V505 = "DISP=SHR") then do
Cl = Cc1","v505
C2 = strip("// "USLine)
C3 = strip("// "DCBTemp)
C4 = strip("// "DDLine4)
C5 = strip("// "V599)
end
else do
C2 = strip("// "V505)
C3 = strip("// "USLine)
C4 = strip("// "DCBTemp)
C5 = strip("// "DDLine4)
C6 = strip("// "V599)
end
Do 4

If length(C2) < 3 then do /* The 2nd card is completely blank */
C2 = C3; C3 = C4; C4 = C5; C5 = Co6; C6 = ""
end
end

/* See if we can (should) combine any JCL lines */
If length(strip(Cl)) < 16 then do

C2 = DelStr(C2,1,11)

Cl ci" "c2

Page [206]

C2 = C3; C3 = C4; C4 = C5; C5 =Co6; C6 =""
End

/* See which lines need continuation commas */
If length(C2) > 2 then C1 = C1/||","

else cz2 ="
If length(C3) > 2 then C2 = C2||","
else c3 =""
If length(C4) > 2 then C3 = C3||","
else c4 = ""
If length(C5) > 2 then C4 = C41||","
else cs5 =m"n
If length(C6) > 2 then C5 = C5||","
else Co = ""
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C1
If C2 /= "" then do
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C2
End
If C3 /= "" then do
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C3
End
If C4 /= "" then do
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C4
End
If C5 /= "" then do
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = C5
End
If C6 /= "" then do
OJCLCtr = OJCLCtr + 1; OJCL.OJCLCtr = Co
End
Call ClearValues;
Return
/* ____________ */
/* Write the Fixed JCL Array to Disk */
/* ____________ */
Proc402:

OJCL.0 = OJCLCtr
OPDSN = FixJCL.JCL
If OJCLCtr = 0 then do
Say "There are no records to write to" OPDSN"!"
Return
Exit
End
"Delete" OPDSN
"Allocate DD(OutFile) DA("OPDSN") new space(l 1) tracks",
"LRECL(80) Block(6160) recfm(f b) RETPD(0)"

"ExecIO" OJCL.0 "DiskW OutFile (STEM OJCL. FINIS"
"Free DDNAME (OutFile)"
Say OJCLCtr "Records written to "OPDSN
ADDRESS "ISPEXEC" "View Dataset ("OPDSN")"
Return

/* Nested operand isolator */

Page [207]

/* This routine will isolate operands that are nested within
parenthesis. It is used mainly for COPIES= and SPACE=.
Example: Piece3=(1,(1,1,1,1)),DEST=U98, HOLD=NO,

This routine will split Piece3 into:

(1,(1,1,1,1)) and DEST=U98, HOLD=NO, */
Proc810:
If left(Piece3,1) = " (" then do /* May be nested */
ReturnStr = " (" ; Level = 1; Index = 2
Do Until Level = 0
If substr (Piece3,Index,1l) = " (" then Level = Level +

=

If substr (Piece3, Index, 1) ")" then Level = Level -
ReturnStr = ReturnStr| |substr (Piece3, Index,1)
Index = Index + 1
End
Piece3 = DelStr (Piece3, 1, Index)
End

Else Parse var Piece3 ReturnStr "," Piece3 /* No nesting */
Return ReturnStr

2 S —— */

/* End-of-job Processing */
2 —— */

ProcEOJ:

Return

Page [208]

FX - File name cross-reference

This exec will convert JCL into a list of stepnames and datasetnames, that can be used as
somewhat of a cross-reference.

/* FX - File Cross-Reference - REXX Exec */

/* This exec will read a set of job control, parse it, and */
/* create a file, one record per datasetname, as follows: */
/* 1- 8 8 Jobname */

/* 9-16 8 Stepname */

/* 17-24 8 DDName */

/* 25-78 54 Datasetname (allowing room for PDS member name) *x/
/* 79-81 3 Disposition (NEW, OLD, MOD) x/

[rmmm e —— Main Body of Program —--———--—————————————————————— */
ARG IPDSN

Call Pgm Init

Do Forever

Call ReadRec /* Read rec into stack; count */
If IPEOF = "YES" then Leave
Pull Record /* Get it from the stack */
Call IdentifyRecord /* See what kind it is */
Call ProcessRecord /* Process it */

end

Call ProcEOJ /* EOJ Processing */

/* ADDRESS "ISPEXEC" "Browse Dataset ("OPDSN")" */

Exit

2 I —————————,. */

Y2 S — * /

/* Program Initialization */

Y2 S—— */

Pgm Init:

"DelStack"

If IPDSN = "" then do

Say "Command Type:

Syntax: FX DSN"
Exit
end

"Alloc DDN(InFile) DSN("IPDSN") SHR"

If RC <> 0 then do
Say "I could not allocate "IPDSN". Sorry."
Exit

end

Say "FX Working on " IPDSN ": " sysvar (SYSUID) Date(U) Time() "..."
OPDSN = “FX.DATAFILE”
"Free FI (OutFile)"

"Alloc DD(OutFile) DA ("OPDSN") MOD space(l5 15) tracks ",
"Lrecl (81) Block(6156) Recfm(F B)"

Page [209]

If RC <> 0 then do

Say "I could not allocate "OPDSN".

Exit
end
"NewStack"
IPEOF = "NO" /*
RecType = " " /*
Spaces = "
Spaces = Spaces || /*
JobName = " (Unk)" /*
StepName= " (Unk)" /*
DDName = " (Unk)" /*
RecCount = 0 /*
TypelCtr = 0 /*
TypellCtr = 0 /*
Typel2Ctr = 0 /*
Typel3Ctr = 0 /*
Typel4Ctr = 0 /*
Typel5Ctr = 0 /*
Type2Ctr = 0 /*
Type3Ctr = 0 /*
TypedlCtr = 0 /*
Typed2Ctr = 0 /*
TypebCtr = 0 /*
TypeUCtr = 0 /*
OpRecCtr = 0 /*
DSNFound = 0 /*
DispFound = 0 /*
/* ____________ */
ReadRec:
Y —— */

"EXECIO 1 DiskR Infile" /*

If RC <> 0 then do

IPEOF = "YES"
"EXECIO 0 DiskR Infile (Finis"
end
Else RecCount RecCount + 1 /*

Return ""
/* ____________ */
IdentifyRecord:
Y * /

Partl = Substr(record,1,?2)
Substr (record, 3,1)

Part2

Part3 = Substr (record,3,71)
Spaces2 = Substr (Spaces, 3,71)

If Substr (Record,1,3)

Else If Partl

Else If Substr
Else If Partl

Else if Substr (Record, 1, 3)
(

Else if Substr (Record,1,1)
Else if Substr (Record,1,9)
= TypeldCtr + 1

Typel4Ctr

Record, 1, 3)
l//l

u//*u
& Part2 /="

— "// "

— "/* i

/: "/"

Sorry."

Input EOF Switch
Record Type

"

Now it's 72 spaces

Job Name

Step Name
DDName

Total Records

First JCL card of a set

Job Cards
DD Cards
EXEC cards

JES (output, message)

Other JCL cards:

JCL continuations
Comment card counter
Data card counter

end of Data card counter

end of job card
Unknown

Output Records
DSN Found

Disp Found

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

cards*/
first card*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

Add the I/P rec to the stack */

/* Close the input file */

Count the records

then Call Proc Type3
then Call Proc Typel
then Call Proc Type?Z2
then Call Proc Type42
& Part3 = Spaces2 then

Call Proc_ Typeb
then Call Proc Type4l

= "/*MESSAGE" then ,

Page [210]

*/

Else if Substr (Record,1,3) = "/*$" then ,

(
TypeldCtr = TypeldCtr + 1
Else if Substr (Record,1l,7) = "/*ROUTE" then
TypeldCtr = TypeldCtr + 1
Else if Substr (Record,1,8) = "/*NOTIFY" then
TypeldCtr = TypeldCtr + 1
Else Call Proc Type Unk
Return
Proc Typel: /* - First JCL cards read
RecType = "1 "
TypelCtr = TypelCtr + 1
FirstBlk = Pos (' ',Record)
TempRecord = Delstr (Record,l,FirstBlk)
TempRecord = Strip (TempRecord, L)
FirstBlk = Pos(' ', TempRecord)
JCLType = SubStr (TempRecord,l,FirstBlk-1)
If JCLType = "JOB" then do
RecType = "11 "
TypellCtr = TypellCtr + 1
FirstBlk = Pos (' ',Record)
JobName = SubStr (Record,3,FirstBlk-1)
end
else If JCLType = "DD" then do
RecType = "12 "
Typel2Ctr = Typel2Ctr + 1
FirstBlk = Pos (' ',Record)
DDName = SubStr (Record,3,FirstBlk-1)
Call FindDSN; Call FindDisp
end
else If JCLType = "EXEC" then do
RecType = "13 "
Typel3Ctr = Typel3Ctr + 1
FirstBlk = Pos (' ',Record)
StepName = SubStr (Record,3,FirstBlk-1)
end
else If JCLType = "OUTPUT" then do
RecType = "14 "
Typeld4Ctr = Typeld4Ctr + 1
end
else do
RecType = "15 "
Typel5Ctr = Typelb5Ctr + 1
end
Return
Proc TypeZ2: /*= JCL continuation cards read
RecType = "2 "
Type2Ctr = Type2Ctr + 1
Call FindDSN; Call FindDisp
Return

Proc Type3:
RecType =
Type3Ctr =

Return

/*- Comment cards read
" 3 "
Type3Ctr + 1

Page [211]

4

4

*/

*/

*/

Proc Type4l: /*- Data cards read */

RecType = "41 "
Typed4lCtr = TypedlCtr + 1

Return

Proc Type42: /*— End of Data cards read */
RecType = "42 "
Typed42Ctr = Typed2Ctr + 1

Return

Proc Typeb5: /*— end of job cards read */
RecType = "5 "
Typeb5Ctr = TypebCtr + 1

Return

Proc_Type Unk: /* Unknown type */
RecType = "2 "

TypeUCtr = TypeUCtr + 1

Say "Unknown; number " RecCount " was read; Type " RecType,
" record follows:"

Say Record

Return

/* Find the datasetname */
FindDSN:
DSNLoc = Index (Record, "DSN=")
If DSNLOC > 0 then do
TempRec = Delstr (Record,1l,DSNLOC+3) /* Delete past dsn= */
FirstBlk = Pos (' ', TempRec)
FirstCom = Pos (', ', TempRec)
If FirstCom = 0 then FirstCom = 80 /* In case no comma */
If FirstBlk < FirstCom then EndPos = FirstBlk

Else EndPos = FirstCom
If EndPos = 0 then do

Say "FindDSN error: " Record
end

DSN = SubStr (TempRec,1l,EndPos-1)
DSN = substr (DSN]| |Spaces,1,54)
DSNFound = DSNFound + 1
OPRecPending = "YES"
end
Return

/* Find the dataset disposition */
FindDisp:
DispLoc = Index(Record,"DISP=")
If DispLOC > 0 then do
TempRec = Delstr (Record,1l,DispLOC+4) /* Delete past Disp= */
FirstBlk = Pos(' ', TempRec)
EndPos = FirstBlk
Disp = SubStr (TempRec,1l,EndPos-1)
DispFound = DispFound + 1

OPRecPending = "YES"

If substr(Disp,1,2) = "(," then Disp = "NEW"

else If substr(Disp,1,5) = "SHARE" then disp = "SHR"
else If substr(Disp,1,4) = "(OLD" then disp = "OLD"

Page [212]

else If substr(Disp,1,4) = "(MOD" then disp = "MOD"
else If substr(Disp,1,4) = "(NEW" then disp = "NEW"
end
Return
Y2 */
/* Process the Record */
Y * /
ProcessRecord:
If OPRecPending = "YES" then do
If Substr (RecType,1,1) /= '2' then do
Jobname= substr (Jobname| |Spaces, 1, 8)
Stepname= substr (Stepname| |Spaces, 1, 8)
DDName = substr (DDName| |Spaces, 1, 8)
OPRec = Jobname| | StepName | | DDName| | DSN| | Disp
OpRecPending = "NO"
OpRecCtr = OpRecCtr + 1
Push OpRec
"EXECIO" 1 "DiskW OutFile"
end
end
Return
Y * /
/* End-of-job Processing */
/* ____________ */
ProcEOJ:
"DelStack"
"Free DDNAME (InFile)"
"EXECIO" 0 "DiskW OutFile (Finis" /* Close the file */
Queue "*** End of Job Totals for " IPDSN "#*x*"
Queue RecCount "records read"
Queue " "TypelCtr "First JCL cards read"
Queue " "TypellCtr "- Job cards"
Queue " "Typel2Ctr "- DD cards"
Queue " "Typel3Ctr "- EXEC cards"
Queue " "TypeldCtr "- JES (OUTPUT, MESSAGE) cards"
If Typel5Ctr > 0 then Queue " "Typel5Ctr "- other JCL cards"
Queue " "Type2Ctr "JCL continuation cards read"
Queue " "Type3Ctr "Comment cards read"
Queue " "Typed4lCtr "Data cards read"
Queue " "Typed42Ctr "End of Data cards read"
Queue " "Type5Ctr "end of job cards read"
If TypeUCtr > 0 then Queue " "TypeUCtr "Unknown cards read"
If TypeUCtr > 0 then Say,
"Warning: " TypeUCtr "Unknown cards read"

Queue OpRecCtr "records written"

OPDSN = FX.LOGFILE

"Free FI(LogFile)"

"Alloc DD(LogFile) DA("OPDSN") MOD space(l5 1) tracks ",

"Lrecl (73) Block(6205) Recfm(F B)"

If RC <> 0 then do
Say "I could not allocate "OPDSN". Sorry."
Exit

end

Quantity = queued()

"EXECIO " Quantity " DiskW LogFile (Finis™"

Page [213]

Return

Page [214]

Guess — Guess the Number
This is an example of a game where the computer picks a number, and you have to guess it in the
fewest tries possible. You are rewarded with feedback after the game.

/* Guess - Guess the Number REXX */
/* This is a Rexx learning exercise */
/* Guess the computer-generated number in the fewest number of turns.*/

PName = "" /* Player Name */
Turn = 1

Say "Welcome to the Guess the Number. I have chose a number between"
Say "000 and 1000, exclusive. See how long it takes you to guess what"
Say "number I have chosen."

S ay " "

Say "Player, please tell me your name!"
Pull PName
Upper PName

Redo:

Guesses = 0 /* Number of guesses */
CNo = Random(1,999) /* Computer number */

/* Say "The computer picked number " CNo */
InProgress = Y

PNumber = 0 /* Player number */

Lower = 0

Upper = 1000

Do While InProgress = Y
Say PName", pick a number between " Lower " and " Upper "."

ReAsk = N
Pull PNumber
If (PNumber <= Lower) | (PNumber >= Upper) then do
Say "Dummy! I said between " Lower " and "Upper "! Try again!"
ReAsk =Y
End
If ReAsk = Y then
Turn = 1
else do
Guesses = Guesses + 1

If CNo = PNumber then do
InProgress = N
Call Recap
Leave

End

Else do
If PNumber < CNo then Lower PNumber
If PNumber > CNo then Upper = PNumber

End

End
End

Say "Again?"
Pull Ans

Page [215]

Upper Ans
If Ans
exit

Recap:

Y then signal ReDo

Say "You guessed it," PName"!"

Select
When Guesses 1 then
Say "One guess!
When Guesses 2 then
Say "Two guesses!
When Guesses 3 then
Say "Three guesses!
When Guesses 4 then
Say "Four guesses!
When Guesses 5 then
Say "Five guesses!
When Guesses 6 then
Say "Six guesses!
When Guesses 7 then
Say "Seven guesses!
When Guesses 8 then
Say "Eight guesses!
When Guesses 9 then
Say "Nine guesses.
When Guesses 10 then
Say "Ten guesses.
When Guesses 11 then
Say "Eleven guesses?
When Guesses 12 then
Say "Twelve guesses?
Otherwise
Say Guesses" guesses!
End

Adjective = "only"
Spread (Upper - Lower)

If Spread > 10 then Adjective
If Spread > 25 then Adjective

Buy a Powerball ticket,

Buy a lottery ticket,

quick!"

quick!"

Are you sitting on a horseshoe?"
You got lucky!"

That's phenomenal!"

That's excellent!"

Very good!"

That's pretty good!"

That's about average."

That's a little under average."

Don't go to the racetrack!"
That's pretty poor!"

Have you ever heard of a binary

"a Whopping"

Say "The spread was" Adjective Spread

Numeric Digits 4

Points

Say "For this game,
Return

Spread * 100/Guesses
you get "Points" points."

Page [216]

search?"

HD - Hex Dump

This command will hex dump a sequential file.

/* REXX PROGRAM */
/* HD - HEX DUMP A SEQUENTIAL FILE IN HEX */
ARG IPDsn NUMRECS OPDsn

/* CHECK COMMAND LINE ARGUMENTS */
IF IPDsn = '' THEN DO
SAY 'COMMAND TYPE:

SYNTAX: HD IPDsn NUMRECS OPDSN'
EXIT
END

/* Some users have turned off their Profile Prefix. */
/* If that is the case with this user, then prefix the OP DSN with */
/* his userid */
If SYSVAR(SYSPREF) = "" then
DSNPref USERID() | |"."
Else
DSNPref = ""

IF OPDsn = '' THEN DO
OPDsn = DSNPREF || "HD.OUTLIST"
END

IF NUMRECS = '' THEN
NUMRECS = 999999

/* SET OUR CONSTANTS */

DFL = 100 /* FRAGMENT LENGTH OF ONE LINE
*/

TESTING = N /* TEST CODE WILL BE EXECUTED
*/

SCALELl = ' 1 2 3 4 5 6'
scalel = scalel || ' 7 8 9 10"

SCALE2 = COPIES('....5....0',10)

SAY '"WORKING...'

DUMMY = LISTDSI (IPDsn)
INFLRECL = SYSLRECL
IF INFLRECL > DFL THEN DO
RECSEGS = TRUNC (INFLRECL/DFL, 0) /* NO. OF RECORD SEGMENTS */
IF INFLRECL/DFL > TRUNC (INFLRECL/DFL,0) THEN
RECSEGS = RECSEGS + 1
RECSEGL = DFL /* SEGMENT LENGTH */
RECSEGLAST = INFLRECL // RECSEGL /* LAST SEGMENT LENGTH */

END

ELSE DO
RECSEGS = 1 /* NO. OF RECORD SEGMENTS */
RECSEGL = INFLRECL /* SEGMENT LENGTH */
RECSEGLAST = INFLRECL /* SEGMENT LENGTH */

END

Page [217]

SAY '*** HD - HEXDUMP, VERS 1.0 ***!'

SAY 'IPDsn: ' IPDsn '; LRECL = ' INFLRECL
SAY 'OPDsn: ' OPDsn
IF TESTING = Y THEN DO
SAY 'NO. OF SEGMENTS TO DISPLAY FOR EACH RECORD: ' RECSEGS
SAY 'SEGMENT LENGTH: ' RECSEGL
SAY 'LAST SEGMENT LENGTH: ' RECSEGLAST
END
"ALLOCATE DDNAME (INFILE) DSN(" IPDsn ") SHR "
"DELETE " OPDsn
"ALLOCATE DDNAME (OUTFILE) DSN (" OPDsn ") NEW SPACE (20,20)" ,
"BLOCK (6171) UNIT(SYSDA) LRECL(121) RECEFM(F B)"
"NEWSTACK"

"EXECIO * DISKR INFILE (STEM INFILE. FINIS"
SAY 'INPUT FILE SIZE:' INFILE.O 'RECORDS.'
QUEUE ' DUMP OF DSN:' IPDsn
IF NUMRECS > INFILE.O THEN
NUMRECS = INFILE.O
SAY 'DUMPING ' NUMRECS 'RECORDS'
DO I = 1 TO NUMRECS
ISTR = FORMAT (I, 3,0)
DO J = 1 TO RECSEGS
SSTR = FORMAT (J,1,0)
RC = ((J-1)*DFL)+1
sC = RC // 100
IF J = RECSEGS THEN
THISRSL = RECSEGLAST

ELSE

THISRSL = RECSEGL
QUEUE ' 'SUBSTR (SCALE1, SC, THISRSL)
QUEUE ' 'SUBSTR (SCALE2, SC, THISRSL)

THISPORTION = SUBSTR(INFILE.I,RC,THISRSL)
QUEUE ISTR'.'SSTR 'CHAR' THISPORTION

/* WORK ON THE ZONE PORTION */

WORKPORTION = C2X (THISPORTION)

THISPORTIONZONE = ' '

DO K = 1 TO (THISRSL*2) BY 2
THISPORTIONZONE = THISPORTIONZONE SUBSTR (WORKPORTION, K,)
THISPORTIONZONE = SPACE (THISPORTIONZONE, O)

END

QUEUE ISTR'.'SSTR' ZONE' THISPORTIONZONE

/* WORK ON THE NUMERIC PORTION */
WORKPORTION = C2X (THISPORTION)
THISPORTIONNUMR = '
DO K = 2 TO (THISRSL*2) BY 2
THISPORTIONNUMR = THISPORTIONNUMR SUBSTR (WORKPORTION, K,)
THISPORTIONNUMR = SPACE (THISPORTIONNUMR, 0)
END
QUEUE ISTR'.'SSTR' NUMR' THISPORTIONNUMR
END
QUEUE ' '
HOW MANY = QUEUED ()
"EXECIO" HOW MANY "DISKW OUTFILE"

Page [218]

END

"EXECIO" 0 "DISKW OUTFILE (FINIS"
"FREE DDNAME (INFILE OUTFILE)"
SAY 'DUMP COMPLETE. CHECK ' OPDsn

"ISPEXEC BROWSE DATASET (" OPDsn

Page [219]

/* CLOSE THE FILE */

INIT - Establish my TSO environment

| use this Rexx exec to establish my TSO environment: allocate my Rexx libraries, tellme
what the temperature is, etc.

/* Init - TSO Session Initialization - REXX EXEC */

Address TSO

"Free Fi(SYSEXEC)"

"Alloc F1i(SYSEXEC) DA ('GRUND.TSTREXX.EXEC' 'GRUND.REXX.EXEC') SHR "

Say;Say; Say /* Start at the top of the screen */
Say "Hello, and welcome to TSO, courtesy of David Grund's INIT EXEC."

Say "Today is" Date (W) Date(U) "; julian is " substr(Date(J),3,3)

MoNum = substr (Date(U),1,2)

If Monum = 1 then Do; Low = 0; High = 55; end
If Monum = 2 then Do; Low = 0; High = 60; end
If Monum = 3 then Do; Low = 15; High = 65; end
If Monum = 4 then Do; Low = 35; High = 80; end
If Monum = 5 then Do; Low = 45; High = 85; end
If Monum = 6 then Do; Low = 50; High = 90; end
If Monum = 7 then Do; Low = 55; High = 95; end
If Monum = 8 then Do; Low = 55; High = 95; end
If Monum = 9 then Do; Low = 50; High = 90; end
If Monum = 10 then Do; Low = 30; High = 85; end

If Monum = 11 then Do; Low = 10; High = 75; end
If Monum = 12 then Do; Low 0; High = 60; end

Temp = Random (Low, High)

Say "The temperature right now is " Temp

TSOMSG = "I executed your INIT exec on " || Date(W) Date(U) "at" Time (C)
TSOMSG = TSOMSG || ", Dave"

"Send '"TSOMSG || "' U(GRUND) LOGON NoWait"

InitSPF

Page [220]

INITSPF - Establish my ISPF environment

| use this command to establish my ISPF environment, which is mainly to allocate my
test ISPF libraries in front of the production ones.

/* InitSPF - REXX EXEC */
/* Initialize personal ISPF environment */

UserID = SYSVAR(SYSUID)

Say "Initializing personal ISPF environment..."
Address TSO

/* Allocate panel libraries */

"Free Fi(ISPPLIB)"

"Alloc Fi (ISPPLIB) DA ('GRUND.ISPF.PANELS' " ,
" 'ISR.IBM.ISRPLIB' ",
" 'ISP.IBM.ISPPLIB' ",
" 'ISR.PRODUCT.ISRPLIB') SHR "

/* Allocate message libraries */
"Free Fi(ISPMLIB)"

"Alloc Fi (ISPMLIB) DA ('GRUND.ISPF.MESSAGES'" ,
" 'ISR.UP.ISRMLIB' "o,
" 'ISR.IBM.ISRMLIB' "o,
" 'ISP.IBM.ISPMLIB' ",
" 'ISR.PRODUCT.ISRMLIB') SHR "

/* Allocate input table libraries */
"Free Fi(ISPTLIB)"

"Alloc Fi(ISPTLIB) DA('GRUND.ISPF.TABLES' " ,
" 'ISR.IBM.ISRTLIB' "o,
" 'ISP.IBM.ISPTLIB') SHR "

/* Allocate output table libraries */
"Free Fi(ISPTABL)"
"Alloc Fi(ISPTABL) DA ('GRUND.ISPF.TABLES') SHR"

/* Allocate skeleton libraries */
"Free Fi(ISPSLIB)"
"Alloc Fi(ISPSLIB) DA('GRUND.ISPF.SKELETON'"

" 'ISR.IBM.ISRSLIB' "o,
" 'ISP.IBM.ISPSLIB' "o,
" 'ISR.PRODUCT.ISRSLIB') SHR "

Say "...Done"

Page [221]

JOBCARD - Create a jobcard

| use this exec to add a standard job card to my JCL

/* JOBCARD - ISPF Edit Macro (REXX EXEC) */

ADDRESS "ISREDIT" "MACRO PROCESS"

address "ISREDIT" " (XDSN)=DATASET"

address "ISREDIT" " (XMEM)=MEMBER"

J0l1 = "//"sysvar(sysuid)"A JOB (accounting info),@DAVID GRUND@, "
Jo21 = "// MSGLEVEL=1,MSGCLASS=C, CLASS=C, PASSWORD=, TIME=1, "
Joz22 = "// USER=" || Sysvar (sysuid) || ",NOTIFY=" || Sysvar (Sysuid)
JO31 = "/ /F e "

J032 = " xn

J03 = J031 || J032

J04 = "//* CREATED BY JOBCARD MACRO" date (U) time ()
J05 = "//* THIS JOB SUBMITTED FROM &XDSN (&XMEM)"

Jo6 = "//* **% JOB STEPS **"

J07 = "//* STEP010 - IEHGODOO - DO ANYTHING YOU WISH"
Jog = "//*x "

Jog = "// JCLLIB ORDER= (GRUND.INCLUDE.JCL)"

J10 = "//STEP010 EXEC PGM=IEHGODOO,REGION=640K"
address "ISREDIT" "LINE AFTER 00 = " "'"Joi"'"

address "ISREDIT" "LINE AFTER 01 =" "'"Jg21"'"
address "ISREDIT" "LINE AFTER 02 =" "'"Jgo22"'"
address "ISREDIT" "LINE AFTER 03 =" "'"Jo3"'"

address "ISREDIT" "LINE AFTER 04 =" "'"Jo4m"'"

address "ISREDIT" "LINE AFTER 05 =" "'"Jos5"'"

address "ISREDIT" "LINE AFTER 06 =" "'"Jo3"'"

address "ISREDIT" "LINE AFTER 07 =" "'"J0e"'"

address "ISREDIT" "LINE AFTER 08 =" "'"Jo7"'"

address "ISREDIT" "LINE AFTER 09 =" "'"Jo3"'"

address "ISREDIT" "LINE AFTER 10 =" "'"Joo"'"

address "ISREDIT" "LINE AFTER 11 =" "'"Jog"'"

address "ISREDIT" "LINE AFTER 12 =" "'"Jo3"'"

address "ISREDIT" "LINE AFTER 13 =" "'"Jo7"'"

address "ISREDIT" "LINE AFTER 14 =" "'"JQo3"'"

address "ISREDIT" "LINE AFTER 15 =" "'"JiQ"'"

/* NOW PUT ASTERISKS IN COL 71 IN LINES 4 THRU 8 */

ADDRESS "ISREDIT" "LABEL 4 = .LSTART "

ADDRESS "ISREDIT" "LABEL 8 .LEND "

ADDRESS "ISREDIT" "CHANGE ' ' '*' 71 .LSTART .LEND ALL"
ADDRESS "ISREDIT" "RESET"

/* I can't get apostrophes around the name to begin with */

/* because of syntax restrictions. So do it now. */
ADDRESS "ISREDIT" "LABEL 1 = .LONLY "

ADDRESS "ISREDIT" "CHANGE '@' ''' _LONLY .LONLY ALL"
ADDRESS "ISREDIT" "Cursor = 1 0"

address "ISREDIT" "LINE AFTER 0 = NoteLine",
"'"Jobcard generated."'"
address "ISREDIT" "LINE AFTER 15 = NoteLine",

Page [222]

LA - List TSO allocations

This Rexx exec will list the TSO allocations and write them to a dataset. It will then edit
that dataset using ISPF macro LAE (included below).

/* LA - Create a List of TSO Allocations - Rexx Exec */

Dummy = OutTrap ("output line.","*")
"LISTA SY ST"

NumLines = OutPut Line.Q

Say NumLines "lines were created"
Dummy = OutTrap ("OFF")

/* Move the line with the DDNAME above the first datasetname
that it is concatenated to. It is currently below. */
Do I = 1 to NumLines
Piecel = SubStr (OutPut Line.I,1,2)
Piece2 = SubStr (OutPut Line.I,3,1)
Piece3 = SubStr (OutPut Line.I,12,4)
]

If Piecel =" &
Piece2 —-= " ' & ,
Piece3 = 'KEEP' then do
J=1-1
SavelLine = OutPut Line.I

Output Line.I = OutPut Line.J
Output Line.J SaveLine
end
end

/* Many users have the TSO profile set to NoPrefix */

/* Account for that here. */

If SYSVAR(SYSPREF) = '' then do
"profile prefix (" userid()
TurnPrefixBackOff =1

end

Else
TurnPrefixBackOff

H) "

Il
o

"Delete la.list"
"Allocate DD(LAList) DA(LA.List) new space(l 1) tracks",
"LRECL (80) Block(5600) recfm(f b) RETPD(0)"

"ExecIO" OutPut line.O "DiskW LAList (STEM OutPut Line. FINIS"
"Free DDNAME (LaList) DA (La.List)"

ADDRESS "ISPEXEC" "EDIT Dataset (La.List) Macro (LAE)"
ADDRESS "TSO"

If TurnPrefixBackOff = 1 then
"Profile Noprefix"

Page [223]

/* LAE

ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS

LAE - ISPF Edit macro for LA

- Edit macro for LA - Rexx Exec */

"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"
"ISREDIT"

"MACRO PROCESS"
"EXCLUDE ALL --DDNAME 1"

"EXCLUDE ALL ' keep' 1 "
"Delete ALL X"
"C 'KEEP' '-————————————— ' word all 12"

Page [224]

LOTTERY - Pick Lottery Numbers

/* Lottery - Pick a Lottery Number - Rexx Exec
/* This program will pick a lottery number for you
Arg Game
Call Init /* Init Program
Call Main /* Mainline
Exit
Y2 S —— */
/* Program Initialization */
/* ____________ */
Init
If Game = "" then do

Say "Which game do you want numbers for?"
Say "The choices are: 1)Pick3 2)PowerBall 3)Show Me Five"

Pull Game
End
If (Game = 1) | (Game = 2) | (Game = 3) then Return
Say Game "is an invalid selection!"
Exit
Return
Y * /
/* Mainline */
2 * /

Main:

/* Pick 3 */

If Game = 1 then do
Numberl = Random (0, 9)
Number?2 = Random (0, 9)
Number3 = Random (0, 9)
Say "The Pick3 numbers I have selected are:",

Numberl Number2 Number3
End

/* PowerBall */
If Game = 2 then do
Numberl = Random(1l,49)

Number?2 = Numberl

Do While Number2 = Numberl
Number?2 = Random(1l,49)

End

Number3 = Numberl

Do While (Number3 = Numberl) | (Number3 = Number?2)
Number3 = Random(1l,49)

End

Number4 = Numberl

Page [225]

*/
*/

*/
*/

Do While (Number4 = Numberl) | (Number4 = Number2) | ,
(Number4 = Number3)
Number4 = Random(1l,49)
End
Number5 = Numberl
Do While (Number5 = Numberl) | (Number5 = Number2) | ,
(Number5 = Number3) | (Number5 = Numberd)
Number5 = Random (1, 49)

End
Number6 = Random(1l,42)

Say "The Powerball numbers I have selected are:",
Numberl Number?2 Number3 Number4 Number5 "PB:"Number6
End

/* Show Me Five */
If Game = 3 then do
Numberl = Random (1, 30)

Number?2 = Numberl

Do While Number2 = Numberl
Number?2 = Random (1, 30)

End

Number3 = Numberl

Do While (Number3 = Numberl) | (Number3 = Number?2)
Number3 = Random (1, 30)
End
Number4 = Numberl
Do While (Number4 = Numberl) | (Number4 = Number2) | ,
(Number4 = Number3)
Number4 = Random (1, 30)
End
Number5 = Numberl
Do While (Number5 = Numberl) | (Number5 = Number2) | ,
(Number5 = Number3) | (Number5 = Numberd)
Number5 = Random (1, 30)

End
Say "The Show Me Five numbers I have selected are:",
Numberl Number2 Number3 Number4 Number5
End

Return

Page [226]

ListDSI - List Dataset Information

/* ListDSI - List Dataset information REXX */
Arg Datasetname
RC = listdsi (datasetname)

If RC = 0 then do
Say "Allocation was successful."
Say "SYSADirBlk="SYSADirBlk
Say "SYSALLOC="SYSALLOC
Say "SYSBLKSIZE="SYSBLKSIZE
Say "SYSCreate="SYSCreate
Say "SYSDSorg="SYSDSOrg
Say "SYSDSName="SYSDSName
Say "SYSExtents="SYSExtents
Say "SYSExDate="SySExDate
Say "SYSKEYLEN="SYSKEYLEN
Say "SYSLRECL="SYSLRECL
Say "SYSMembers="SYSMembers
Say "SYSPassword="SYSPassword
Say "SYSPrimary="SYSPrimary
Say "SYSRefDate="SYSRefDate
Say "SYSRACFA="SYSRACFA
Say "SYSRECFM="SYSRECFM
Say "SYSSeconds="SYSSeconds
Say "SYSTrksCyl="SYSTrksCyl
Say "SYSUnit="SYSUnit
Say "SYSUnits="SYSUnits
Say "SYSUpdated="SYSUpdated
Say "SYSUSED="SYSUSED
Say "SYSVolume="SYSVolume

End
Else do
Say "Return code = " RC
Say "SYSReason="SYSReason
Say "SYSMSGLVL1="SYSMsgLvll
Say "SYSMSGLVL2="SYSMsgLvl2
End

Page [227]

LPDSIX - List a PDS Index to a Sequential File

This command will list the members of a PDS out to a sequential dataset for subsequent

editing.

/* LPDSIX - List a PDS Index to a Sequential File
Arg PDSName
Call ProcO01 /* Program Initialization

*/

*/

Call Proc02 /* List Members to an array */
Call Proc03 /* Create the sequential file array */

Call Proc99 /* Finalization
Exit

ProcQO1l:

Say "LPDSIX - List a PDS Index to Sequential File"

Say "Proceeding..."

If PDSName = '' then do
Say "PDSName not specified"
Exit (16)

End

Prefix = sysvar (SYSUID)

/* Say "The datasetname is " PDSName */
Return

2 T —— *)
/* List Members to an array */
/* ____________ */

Proc02:

TmStart = Time (S)
Say "Listing "PDSName" Members..."
Dummy = OutTrap ("Members.","*")
"LISTD "PDSName" M "
Dummy = OutTrap ("OFF")
NumMembers = Members.O
If NumMembers < 2 then do
Say "No members found: problem?"
Exit (106)
End

AdjMembers = NumMembers - 6 /* Don't count the first six blanks */

Say AdjMembers PDSName "names were found"
TmEnd = Time (S)
TmDur = TmEnd - TmStart
Say "That took " TmDur "seconds!"
Return

/* Create the sequential file array */

Page [228]

Proc03:
Do I = 1 to NumMembers
Members.I = strip(Members.I)

OrigMemname = left (Members.I, 8)
End

OPDSN "LPDSIX.Work"
Dummy = OutTrap ("Junk.","*")
/* Allocate the sequential output file */
Address TSO
"Delete " OPDSN
"Free FI(SegFil)"
Dummy = OutTrap ("OFF")
"ALLOC F(SeqgFil) DA ("OPDSN") NEW UNIT (SYSDA) DSORG(PS)",
"SPACE (45 45) Tracks LRECL(88) BLKSIZE (6160) RECFM(F,B)"

'EXECIO' NumMembers 'DISKW SeqgFil (STEM Members. FINIS'
"Free FI(SegFil)"

Return
/* ____________ */
/* Finalization */
Y * /
Proc99:
Say OPDSN "created. LPDSIX complete :)"
Return

Page [229]

Prime — Calculate Prime Numbers

This is an exec that will calculate prime numbers. If you want more or less, you can easily
change the upper and lower limits.

/* Prime - Calculate Prime Numbers REXX */
/* Written by David Grund, January, 2005 */
Lowest = 000005 /* This MUST be an odd number! */

Highest = 030000

Nth = 200 /* Displaying every nth one */

STime = time (E)

Quantity = 0
Say "Calculating prime numbers from "Lowest" to "Highest
Say " and displaying every "Nth"th one."
Do I = Lowest to Highest by 2
Do J =3 toI -1by?2
/* Say "A: I="I"; J="J"; I mod J="1 // J */
Quotient =1 // J
If Quotient = 0 then Leave
End
If Quotient <> 0 then do
Quantity = Quantity + 1
If Quantity // Nth = 0 then Say I "is a prime number; #"Quantity
End

End

Say "I found "Quantity" prime numbers altogether."
ETime = time (E)

Say "This took "trunc((ETime - STime),2)" seconds."

Page [230]

PROCSYMS - Perform Symbolic Substitution

/* ProcSyms - ISPF Edit Macro REXX EXEC */
/* This macro is used to perform symbolic substitution on a set of */
/* JCL that calls a proc. */
/* 1) Put all symbolics from the PROC statement into an array */
/* 2) For testing, list the array */
/* 3) Copy the array to a change command array */
/* 4) Execute the change command array */
Address "ISREDIT" "MACRO PROCESS"
Address "ISREDIT"
Call ProcO01 /* Put Symbs and Vals => arrays*/
Call Proc02 /* List the arrays */
Call Proc03 /* Create the change arrays */
/* 1 Proc04 */ /* List the change arrays */
Call Proc05 /* Execute the changes */
Exit
/* ___________ */
/* ProcOl - Put all the symbolics and values from the PROC statement */
/* into arrays. */
2 S —— */
ProcO1l:
Address "ISREDIT"
"Exclude A1l '//*' 1"
"Find ' PROC ' All NX"
"ISREdit (NumFnd, Junk) = Find Counts"
If NumFnd = 0 then do
zedsmsg = "'Not a PROC"
zedlmsg = "I did not find a PROC statement in this member"
Address ISPExec
"SETMSG MSG (ISRz000)"
Exit
End
If NumFnd > 1 then do
zedsmsg = "Too many"
zedlmsg = "I found "NumFnd" PROC statements.",
"I don't know how to process more than one."
Address ISPExec
"SETMSG MSG (ISRz000)"
Exit
End
/* At this point, we are looking at a line with the word 'PROC' */
ProcLine = 'Y' /* This is the PROC line */
" (CurrLine) = LINE .ZCSR" /* Read the line that the cursor is on */
Currline = left (CurrLIne,72) /* Drop off the sequence number*/
'ISREDIT (CLineNo,x) = CURSOR' /* save cursor position */
Say "The input line is "Currline
SymArray.0 = 0 ; ValArray.0 = 0 /* Init Sym and Value arrays */
NextEnt = 0 /* Next array entry number */

Page [231]

StillIn = 'Y'

Do while StillIn = 'Y'

/* Parse the line into operands */
Parse var CurrLine Operandl Operand?2

/* Set continue processing sw */

Operand3 Operand4

Say " Operand 1="Operandl

Say " Operand 2="Operand?2

Say " Operand 3="Operand3

Say " Operand 4="Operand4

If ProclLine = 'Y' then do /* If this is the 'PROC' line, */
Params = Operand3 /* Params are operand 3 */
ProcLine = 'N'

End

Else
Params = Operand?2 /* Params are operand 2 */

Params = strip (Params)

If right(Params,1) = ',' then do /* end in comma? */
LastLine = 'N' /* Off ind: this is not last */
Params = left (Params, length(Params)-1) /* Remove the comma */

End

Else
LastLine = 'Y' /* Set indicator */

Do while length (Params) > 0

Call Proc011 /* Get the next Parameter */

End
If LastLine = 'Y' then
StillIn = 'N'
Else do
CLineNo = CLineNo + 1
" (CurrLine) = LINE "ClineNo
CurrLine = left (CurrLIne,72)
End
End
Return
2 * /
/* Get the Next Symbolic Parameter and
2 * /
ProcO1l1l:

/* First handle the Symbolic */
Pos = Index (Params, '=")
If Pos = 0 then do

Params = ""

Return
End
ThisSym = left (Params,Pos-1)
/* Say "Trace: ThisSym="ThisSym */
NextEnt = NextEnt + 1
SymArray.NextEnt = ThisSym
SymArray.0 = NextEnt
Params =

/* If this is the last line, */

/* we are done */
/* otherwise */
/* Bump line number */
/* Read the next line down */
/* Drop off the seqg number */
Value */

/* Point to the equals sign */
/* No more params on this line*/
/* Reduce the line to nothing */

DelStr (Params, 1, length (ThisSym) +1)

/* Say "The remainder of the line is"™ Params */

/* Now handle the value */

Page [232]

Params = Params]||" " /* Add a space, just in case */
If left(Params,1l) = "'" then do /* Delimiter is an apostrophe*/
Params = Delstr (Params,1,1) /* Delete the first one */
EndPos = Index (Params,"'")
If EndPos = 0 then do
Say "Problem! No second apostrophe found; line=" Params
Exit
End
Params = Delstr (Params,EndPos,1l) /* Delete the second one */
End
Else do
EndPos = Index (Params,",")

If EndPos = 0 then EndPos = Index(Params," ")
If EndPos = 0 then do
Say "Problem! Data line is corrupted; line="Params
Say " Length of Params="length (Params)
Exit
End
End
ThisVal = substr (Params,l,EndPos-1)
/* Say "ThisVal="ThisvVal */
Params = DelStr (Params,l,length(Thisval)+1)
ValArray.NextEnt = ThisVal
ValArray.0 = NextEnt

Params = strip (Params)
Return
2 S —— */
/* Proc02 - List the arrays */
/* ___________ */
Proc02:

Say "Symbolic|Value"
Do I = 1 to SymArray.O
ThisStr = left(SymArray.I||" ",8)
ThisStr = ThisStr||" "
ThisStr = ThisStr| |ValArray.I
Say ThisStr

End
Return
/* ___________ */
/* Proc03 - Create the change arrays */
2 —— */
Proc03:

ChgArrayl.0 = 0 ; ChgArray2.0 = 0;
Do I = 1 to SymArray.O0

/* Symbolics with the '.' */

ChgArrayl.I = "Change '&&&&"SymArray.I".' '""ValArray.I"' all"

/* Symbolics without the '.' */

ChgArray2.I = "Change '&&&&"SymArray.I"' '"ValArray.I"' all word"
End

ChgArrayl.0 = SymArray.0 ; ChgArray2.0 = SymArray.0
Return

/* ___________ */
/* Proc04 - List the Change Arrays */
/* ___________ */

Page [233]

ProcQ04:

Do I = 1 to ChgArrayl.

Say ChgArrayl.T
End

Do I = 1 to ChgArray2.

Say ChgArray2.1I
End

Return

2 S — */

/* Proc05 - Execute the
2 S — */

Proc05:

Address "ISREDIT"

Do I = 1 to ChgArrayl.

ChgArrayl.I
ChgArray2.I
End

Change Arrays */

address "ISREDIT" "LINE AFTER 0 = NoteLine",

address "ISREDIT" "LINE AFTER 0 = NoteLine",
"'" Symbolic substitution performed ISPF macro ProcSyms."'"
address "ISREDIT" "LINE AFTER 0 = NoteLine",

"Up Maxll
Return

Page [234]

PTS - PDS-to-Sequential; member name is prefix

This exec will "flatten out” a PDS, adding the member name to the front of each line. The
result is written to a dataset for subsequent modification.

/* PTS - Copy a PDS to a sequential file, adding the */

/* member name to the first 8 positions */

Arg PDSName

Call ProcO01 /* Program Initialization */

Call Proc02 /* List Members to an array */

Call Proc03 /* Create the sequential file array */

Call Proc04 /* Write the array to a dataset */

Call Proc99 /* Finalization */

Exit
2 E————— */
/* Called Procedures */
/* ___ */
/* ____________ */

/* Program Initialization */

Y2 S— */

ProcOl:

Say "PTS - Copy PDS to Sequential"
Say "Proceeding..."

If PDSName = '' then do
Say "PDSName not specified"
Exit (16)

End

Prefix = sysvar (SYSPREF)
If Prefix = "" then
Prefix = sysvar (SYSUID)

/* Follow TSO conventions. If the PDSName has quotes remove them.
If not, add the userid to the front */
If Left (PDSName,1l) = "'" then do
Ourlen = length (PDSName) - 2
PDSName = substr (PDSName,2,Ourlen)
End
Else
PDSName = Prefix||"."| |PDSName
/* Say "The datasetname is " PDSName */
Return

Proc02:
Say "Listing "PDSName" Members..."
Dummy = OutTrap ("Members.","*")
"LISTD '"PDSName"' M "
Dummy = OutTrap ("OFF")
NumMembers = Members.O
If NumMembers < 2 then do

Page [235]

Say "No members found: problem?"
Exit (16)
End

AdjMembers = NumMembers - 6 /* Don't count the first six blanks */

Say AdjMembers PDSName "names were found"
Return

Proc03:

SeqgFileNumLines = 0

Do I = 7 to NumMembers
Members.I = strip(Members.I)
OrigMemname = left (Members.I, 8)
Memname = strip (OrigMemName)
InputDSN = "'"PDSName" ("Memname") '"
/* Say "InputDSN=" InputDSN */
Address TSO
"ALLOC DA ("InputDSN") F (INDD) SHR REUSE"
'EXECIO * DISKR INDD (STEM REC. FINIS'
'FREE F (INDD)'
ThisMemNumLines = REC.O0
/* Say "Member contains" ThisMemNumLines" lines" */

Do J = 1 to ThisMemNumLines

ThisLine = OrigMemName || Rec.J
SegFileNumLines = SegFileNumLines + 1
SegArray.SeqgFileNumLines = ThisLine
End
End

/* Say 'The sequential file array contains' SeqFileNumLines'
Return

/* ____________ */
/* Write the array to a dataset */
/* ____________ */
Proc04:
OPDSN = "'""Prefix||"."||PTS.Work""'"

Dummy = OutTrap ("Junk.","*")

/* Allocate the sequential output file */

Address TSO

"Delete " OPDSN

"Free FI(SegFil)"

Dummy = OutTrap ("OFF")

"ALLOC F(SeqgFil) DA ("OPDSN") NEW UNIT (SYSDA) DSORG(PS)",

lines'*/

"SPACE (45 45) Tracks LRECL(88) BLKSIZE (6160) RECEFM(F,B)"

/* Now write the array to the sequential output file */

'EXECIO' SeqgFileNumLines 'DISKW SegFil (STEM SegArray. FINIS'

"Free FI(SeqgFil)"

Return

Y2 * /
/* Finalization */
/* ____________ */
Proc99:

Page [236]

Say OPDSN "created. PTS complete :)"
Return

Page [237]

PTS2 - PDS-to-Sequential; member name is inserted

This exec will "flatten out” a PDS, inserting a line with the member name between each
member. The result is written to a dataset for subsequent modification.

/* PTS2 - Copy a PDS to a sequential file, adding the */

/* member name between members */

Arg PDSName

Call ProcO01 /* Program Initialization */

Call Proc02 /* List Members to an array */

Call Proc03 /* Create the sequential file array */

Call Proc04 /* Write the array to a dataset */

Call Proc99 /* Finalization */

Exit
2 E————— */
/* Called Procedures */
/* ___ */
/* ____________ */

/* Program Initialization */

Y2 S— */

ProcQO1l:

Say "PTS2 - Copy PDS to Sequential”
Say "Proceeding..."

If PDSName = '' then do
Say "PDSName not specified"
Exit (16)

End

Prefix = sysvar (SYSPREF)
If Prefix = "" then
Prefix = sysvar (SYSUID)

/* Follow TSO conventions. If the PDSName has quotes remove them.
If not, add the userid to the front */
If Left (PDSName,1l) = "'" then do
Ourlen = length (PDSName) - 2
PDSName = substr (PDSName,2,Ourlen)
End
Else
PDSName = Prefix||"."| |PDSName
/* Say "The datasetname is " PDSName */
Return

Proc02:
Say "Listing "PDSName" Members..."
Dummy = OutTrap ("Members.","*")
"LISTD '"PDSName"' M "
Dummy = OutTrap ("OFF")
NumMembers = Members.O
If NumMembers < 2 then do

Page [238]

Say "No members found: problem?"
Exit (16)
End

AdjMembers = NumMembers - 6 /* Don't count the first six blanks */

Say AdjMembers PDSName "names were found"

Return

Y * /

/* Create the sequential file array */
2 */

Proc03:

SeqgFileNumLines = 0
Do I = 7 to NumMembers
Members.I = strip(Members.I)
OrigMemname = left (Members.I, 8)
Memname = strip (OrigMemName)
InputDSN = "'"PDSName" ("Memname") '"
/* Say "InputDSN=" InputDSN */
Address TSO
"ALLOC DA ("InputDSN") F (INDD) SHR REUSE"
'EXECIO * DISKR INDD (STEM REC. FINIS'
'FREE F (INDD)'
ThisMemNumLines = REC.O0
/* Say "Member contains" ThisMemNumLines" lines" */

/* First write a record containing the member name */
SegFileNumLines = SegFileNumLines + 1

SegArray.SeqgFileNumLines = "== " || OrigMemName || " =="

Do J = 1 to ThisMemNumLines
ThisLine = Rec.J
SegFileNumLines = SegFileNumLines + 1
SeqgArray.SeqgFileNumLines = ThisLine
End
End
/* Say 'The sequential file array contains' SeqFileNumLines'
Return

2 — *)
/* Write the array to a dataset */
/* ____________ */
Proc04:
OPDSN = "'""Prefix||"."||PTS2.Work""'"

Dummy = OutTrap ("Junk.","*")

/* Allocate the sequential output file */

Address TSO

"Delete " OPDSN

"Free FI(SegFil)"

Dummy = OutTrap ("OFF")

"ALLOC F(SegFil) DA("OPDSN") NEW UNIT(SYSDA) DSORG(PS)",

lines'*/

"SPACE (45 45) Tracks LRECL(80) BLKSIZE (6160) RECEFM(F,B)"

/* Now write the array to the sequential output file */

'EXECIO' SegFileNumLines 'DISKW SegFil (STEM SegArray. FINIS'

"Free FI(SegFil)"
Return

Page [239]

Proc99:
Say OPDSN "created. PTS2 complete :)"
Return

Page [240]

RexxModl - Rexx Exec Model

Every toolbox should have a model from which to create a new program, be it bare-
bones, or chock-full of routines to weed through. Here is the former.

/* PgmID - Program Function - Rexx Exec */
/* Written by . . . */
/* This program will... */
Arg Spec

Call Init /* Init Program */
Exit

2 —— */

/* Program Initialization */

Y S —— */

Init

Return

Page [241]

Scale - Display a Scale

This is a code snippet that is handy for lining things up, when necessary.

Say ' 1 2 3 4 5 6'
Say '....5....0....5....0....5....0....5....0....5....0....5....0"

Page [242]

ScanL.ibs — Scan Library Concatenations

/* ScanLibs - Scan a Concat of Libraries for text REXX */
/* Written by David Grund, Feb 21, 2005. */
Arg OurDD OurText
Call ProcO1 /* Initialization */
Call Proc02 /* LisaA to an array */
Call Proc03 /* Adjust the array */
Call Proc04 /* Remove 'KEEP' lines */
/* Call ProcQ05 */ /* Write the array to a dataset and view it */
Call Proc06 /* Isolate the DD */
Call Proc07 /* List all DSN's in the concatenation */
Call Proc08 /* Scan each PDS */
Y2 S —— */
/* Proc0l - Initialization */
Y2 S — */
ProcO1l:

If OQurDD = "" | OurText = "" then do

Say "Command syntax: ScanLibs DDName OurText"
Exit (106)

End
Return
/* ____________ */
/* Proc02 - ListA to an Array */
Y2 S — */
Proc02:

Dummy = OutTrap ("output line.","*")
"LISTA SY ST"
NumLines = Output Line.0
/* Say Numlines "lines were created */
Dummy = OutTrap ("OFF")

Return

Proc03:
/* Move the line with the DDName above the first datasetname that */
/* it is concatenated to. It is currently below. */
Do I = 1 to NumLines
Coll 2 = Substr(Output Line.I,1,2)
Col3 = Substr (Output Line.I,3,1)
Coll2 15 = Substr (Output Line.I,12,4)
If Coll 2 =" ' & Col 3 /=" " & Coll2 15 = '"KEEP' then do
J=1-1
SavelLine = Output Line.I
Output Line.I = Output Line.J
Output Line.J = Saveline

End
End
Return
/* ____________ */
/* Proc04 - Remove all lines that say only 'KEEP' */
2 S — */

Page [243]

ProcQ04:

J =20 /* Output array counter */
Do I = 1 to NumLines
ThisLine = strip(Output Line.I)
If (Left(ThisLine,4) = 'KEEP') | ,
(Left (ThisLine,8) = 'TERMFILE') then nop=nop
Else do
J=J + 1
NewArray.J = Output Line.I
End
End
NewArray.0 = J
Return
Y2 */

Proc05:
"Delete ScanLibs.List Purge"
"Allocate DD(FMList) DA (ScanLibs.List) new space(l 1) tracks",
"Lrecl (80) Block(5600) recfm(f b) retpd(l)"
"ExecIO" NewArray.0 "DiskW FMList (STem NewArray. FINIS"
"Free DDName (FMList) DA (ScanLibs.List)"
Address "ISPEXEC" "View Dataset (Scanlibs.List)"
exit (0)
Return

/* Proc06 - Isolate the DD */

ProcQ06:
J =20 /* DSNArray counter */
DDName = "'
Do I = 1 to NewArray.O
If left (NewArray.I,2) =" ' then
DDName = left (strip (NewArray.I),8)
else do
ThisRec = DDName| |strip (NewArray.I)
J=J + 1
DSNArray.J = ThisRec
End
End
DSNArray.0 = J
/* Do I = 1 to DSNArray.0; Say DSNArray.I; End */
Return

/* ____________ */
/* Proc07 - List all DSN's in the concatenation */
Y —— */
ProcQ7:

DDFound = 0

Do I = 1 to DSNArray.0 /* Skip the first six lines */

If left (DSNArray.I,8) = OurDD then do
DDFound DDFound + 1

DSN = strip(substr (DSNArray.i,9,63))
/* Say "I found" DSN */
DSNArray?2.DDFound = DSN

Page [244]

End
End
DSNArray2.0 = DDFound
Say "I found" DDFound "datasets concatenated to "OurDD
Return

Y2 S —— */

/* Proc08 - Iteratively scan each PDS */
Y2 S */

Proc08:

MemSearched = 0

TextFound = 0
Do I = 1 to DSNArray2.0
DSN = DSNArray2.I
Say "Processing DSN="DSN
/* First let's make sure this dataset is a PDS */
RC = ListDSI("'"DSN"'" Directory)
If RC > 0 then do
Say "Error processing "DSN
Say SYSMSGLVL1
Say SYSMSGLVL2; Say
Return
End
If SYSDSORG = "PO" then do
Dummy = OutTrap ("PDSMems.","*") /* List the member names */
"ListD '"DSN"' M"
NumLines = PDSMems.O0
Dummy = OutTrap ("OFF")
Do J = 7 to PDSMems.O0
/* Say " Proc08: This PDS member is: "PDSMems.J */
Call Proc081 /* Scan THIS PDS */
End
End
Else
Say "Dataset "DSN" is not a PDS."
End
Say "Members searched: "MemSearched
Say "LInes found containing the text: "TextFound
Return

/* Proc081 - Scan THIS PDS Member */
Proc081:

MemSearched = MemSearched + 1
Member = strip (PDSMems.J)

If Pos('-',Member) = 0 then do /* Member Names with a '-' in them? */
OurDS = DSN" ("Member")"
If Pos('ALIAS',OurDS) = 0 then do /* Bypass aliases */
/* Say " Proc081l: Processing "OurDS */
"Allocate DD (ThisMem) DA ('"OurDS"') shr"

If RC > 0 then exit
"ExecIO * DiskR ThisMem (Stem DSl1Lines. Finis "
"Free DDName (ThisMem)"

Do K =1 to DSl1lLines.O
If Pos(OurText,DS1Lines.K) > 0 then do

Page [245]

Say "I found "OurText" in "OurDS
Say DSl1lLines.K
TextFound = TextFound + 1
End
End
End
End
Return

Page [246]

SDN - Sorted Directory w/Notes (Directory Annotator)

This is a handy ISPF macro that | wrote to keep track of what | have in my PDS's. This
command will create and maintain a member called "@LIST", which contains a one-liner about
each member in the PDS. Hopefully, this member will always be the first in a PDS.

Unfortunately, this command can be invoked only while you are editing a member of the
PDS that you wish to annotate.

/* SDN - REXX EXEC */
/* Sorted Directory w/Notes - Edit Macro */
/* Written by David Grund */
/* Changed 7/27/95- restore the TSO Profile prefix before ISPF */
/* edit is invoked, instead of after the command is complete */

ADDRESS "ISREDIT" "MACRO PROCESS"

2 * /
/* Initialization */
2 * /
/* It's almost impossible to effectively handle datasetnames while */
/* the TSO Profile Prefix is set to on. */
PREFIX = SYSVAR (SYSPREF) /* Get the Prefix */
If PREFIX = "" then DO /* prefix is not set */
PrefixOn = 0 /* Set a switch for later */
end
else Do
PrefixOn = 1 /* Set a switch for later */
ADDRESS TSO
"Profile NoPrefix" /* Turn the prefix off */
end
2 S EE—————— */
/* 1) Read QRLIST from current pds */
2 * /
Address "ISREDIT" " (XDSN)=DATASET"

Dummy = ListDsi (XDSN)
If SYSDSORG —= "PO" then do
Say "This dataset is not a PDS. No action performed.”

Exit
end
IPDSN = "'"XDSN" (Q@LIST)'"
If SYSdsn (IPDSN) = "OK" then
nop = nop
/* Say "The dsn is "IPDSN */
else do /* Create @List with one member */
"NewStack"
"Allocate DD (FileA) DA ("IPDSN") shr"
ARec = "QLIST This member"
Push ARec
"ExecIO 1 DiskW FileA "
"ExecIO 0 DiskW FileA (Finis" /* Close the output file */

"Free DDNAME (FileA)"
end

Page [247]

/* "Free FI (OldFile)" */
"Allocate FI (0OldFile) DA ("IPDSN") shr"

"ExecIO * DiskR OldFile (STEM FileARec. FINIS"
"Free FI(OldFile)"
/* Say FileARec.0 "Records read into the FileARec array" */

Dummy = OutTrap ("FileBRec.","*")

"LISTD " IPDSN " M"

Dummy = OutTrap ("OFF")

/* Say FileBRec.0 "Records read into the FileBRec array" */

/* ListD has a problem when run from within a REXX EXEC.
/* It spits out two or three lines that it doesn't write when
/* running from outside of an EXEC. These lines start with the

/* string "--MEMBER--". Find out where our list really starts,
/* and save that record number for use later.
FileBPos = 0 /* Initialize this wvalue

Do I =1 to 15
If SubStr(FileBRec.I,1,11)
FileBPos = I + 1
Signal DoneZ2
end
/* Say I FileBRec.I */

"--MEMBERS--" then do

end
Done2: Nop=nop
If FileBPos = 0 then do
Say "Problem with SDN EXEC at POINT 1"

Exit (0)
end
/* ___
/* 3) Compare, and create the new @List
/* ___
OPDSN = "'"XDSN" (Q@LIST)"'"
"NewStack"

"Allocate DD(FileC) DA ("OPDSN") shr"
FileAPos = 1

/* FileBPos is set in section 2 above */
FileCPos = 1

GetBoth:
/* Get a record from File A */
If FileAPos > FileARec.0 then
FileAKey = '99999999"
Else Do
FileAKey = SubStr(FileARec.FileAPos,1,8)

ARec = SubStr (FileARec.FileAPos,1,72)
FileAPos = FileAPos + 1

end

/* Say "The first record from FileA is: " ARec */

/* Get a record from File B */
If FileBPos > FileBRec.0 then

Page [248]

*/
*/
*/
*/
*/
*/

FileBKey '99999999"
Else Do

FileBKey = SubStr (FileBRec.FileBPos, 3,10)

BRec = SubStr (FileBRec.FileBPos,3,72)
FileBPos = FileBPos + 1
END
/* Say "The first record from FileB is: " BRec */
Compare:

If FileAKey < FileBKey then signal ALow
If FileBKey < FileAKey then signal BLow
/* Say "The record being compared is " FileAKey FileBKey */

/* Member names are the same */

If FileAKey = "99999999" then /* Both files are at end-of-file */
signal EOF

CRec = SubStr (ARec,1,9)" "Substr (ARec,11,70)

/* Say "The record going out is " Crec */

Push CRec

"ExecIO 1 DiskW FileC "
Signal GetBoth

ALow:
CRec = SubStr (ARec,1,9)"-"Substr (ARec,11,70)
Push CRec

"ExecIO 1 DiskW FileC "

/* Get a record from File A */

If FileAPos > FileARec.0 then
FileAKey = '99999999"

Else Do
FileAKey = SubStr (FileARec.FileAPos,1,8)
ARec SubStr (FileARec.FileAPos,1,72)
FileAPos = FileAPos + 1

end

Signal Compare

BLow:
CRec = SubStr (BRec,1,9)"+"Substr (BRec,11,70)
Push CRec

"ExecIO 1 DiskW FileC "

/* Get a record from File B */

If FileBPos > FileBRec.0 then
FileBKey '99999999"

Else Do
FileBKey = SubStr (FileBRec.FileBPos,3,10)
BRec SubStr (FileBRec.FileBPos, 3, 72)
FileBPos FileBPos + 1

END

Signal Compare

EQF:
"ExecIO 0 DiskW FileC (Finis" /* Close the output file */
"Free DDNAME (FileC)"

/* If the TSO Profile Prefix was set to on when we came in, restore */

/* it. */
If PrefixOn = 1 then do /* We came in with the setting */

Page [249]

ADDRESS TSO
"Profile Prefix ("PREFIX")"
end

/* Restore it

ADDRESS "ISPEXEC" "EDIT Dataset ("OPDSN") "

Page [250]

*/

SHOWDUPS - Show Duplicates

This exec is an ISPF macro that will show all duplicated lines in a dataset.

/* ShowDups - Show Duplicate Lines - REXX Exec */
ADDRESS ISREDIT
'MACRO (begcol endcol)'

If Begcol = '?' then do
zedsmsg = 'ShowDup begcol,endcol'’
zedlmsg = 'Command syntax: ShowDup beginning col, ending
col'
signal gquitme
end
numcheck = DATATYPE (begcol,N) /* Determine if any parms
have */
If NumCheck /= 1 then BegCol = 1 /* been passed.
*/
numcheck = DATATYPE (endcol, N)
If NumCheck /= 1 then 'ISREDIT (endcol) = LRECL'

'"ISREDIT (currline) LINENUM .ZFIRST' /* save starting record

*/
'"ISREDIT (lastline) = LINENUM .ZLAST' /* save ending record #
*/
'"ISREDIT (cl,cc) = CURSOR' /* save cursor position
*/
DupCnt = 0
'ISREDIT EXCLUDE ALL'
Do currline = 1 to lastline - 1
'"ISREDIT (linel) = LINE' currline
linel = substr(linel,begcol, (endcol - begcol) + 1)
nextline = currline + 1
'"ISREDIT (line2) = LINE' nextline /* get next record */
line2 = substr(line2,begcol, (endcol - begcol) + 1)
If linel == line2 then do
DupCnt = DupCnt + 1
"ISREDIT LABEL " currline " = .A"
"ISREDIT LABEL " nextline " = .B"
"ISREDIT RESET EXCLUDED .A .B"
end
end

zedsmsg = DupCnt 'DUPS FOUND'

zedlmsg = DupCnt 'duplicate lines were detected’
Quitme:

ADDRESS ISPEXEC

'SETMSG MSG (ISRZ000)'

EXIT O

Page [251]

Stack - Start another ISPF session

This is a handy Rexx exec that, while you are in an ISPF session, will start another one.
The action is totally recursive.

/* Stack - Start Another ISPF Session - Rexx Exec */
/* This program will start another ISPF session so you don't

have to back out of everything you have when you want another
window. */

Address ISPExec
"Select Panel (ISR@Prim)"

Page [252]

TimeFmts - Show all time formats

/* TimeFmts - Time Formats - Rexx EXEC */
/* Written by David Grund */
Say "Date()" Date()
Say "Date(B)" Date (B)
Say "Date(C)" Date (C)
Say "Date(D)" Date (D)
Say "Date(E)" Date (E)
Say "Date(J)" Date (J)
Say "Date(M)" Date (M)
Say "Date(O)" Date (0)
Say "Date(S)" Date(S)
Say "Date(U)" Date (U)
Say "Date(W)" Date (W)
Say "Time ()" Time()
Say "Time (C)" Time (C)
Say "Time (H)" Time (H)
Say "Time (L)" Time (L)
Say "Time (M) " Time (M)
Say "Time (N)" Time (N)
Say "Time (R)" Time (R)
Say "Time (S)" Time (S)

Page [253]

TimeToGo - Display time until an event

This exec can be used to display how much time remains until a certin event. This can be
pretty informative and useful on a Friday afternoon at about 2:00.

/* TimeToGo - Rexx EXEC */

/* Written by David Grund */

/* This is a Rexx learning exercise. Its purpose 1is to */
/* calculate how much time remains to a specific event */
TargetHH = 16 /* Set these to the */

TargetMM = 00 /* event */

TargetSS = 00 /* time */
TargetSeconds = (TargetHH * 60 * 60) + (TargetMM * 60) +
TargetSS

TimeNow = Time (N)

TimeNowHH = left (TimeNow, 2)

TimeNowMM = substr (TimeNow, 4, 2)

TimeNowSS right (TimeNow, 2)

SecondsNow = (TimeNowHH * 60 * 60) + (TimeNowMM * 60) +
TimeNowSS

SecondsLeft = TargetSeconds - SecondsNow
/* Say "SecondsLeft = " SecondsLeft */

TimeToGoHH = trunc (SecondsLeft / 3600)
SecondsLeft = SecondsLeft - (TimeToGoHH * 3600)

TimeToGoMM = trunc (SecondsLeft / 60)
SecondsLeft = SecondslLeft - (TimeToGoMM * 60)
TimeToGoSS = SecondslLeft

/* Now format the time so we don't get something like 7:7:4 */
If TimeToGoSS < 10 then

TimeToGoSS = '0' || TimeToGoSS
If TimeToGoMM < 10 then
TimeToGoMM = '0O' || TimeToGoMM

If TimeToGoHH > 0 then

Say "Time to Go: "TimeToGoHH":"TimeToGoMM":"TimeToGoSS
Else

Say "Time to Go: "TimeToGoMM":"TimeToGoSS

Page [254]

Section 1V - The Rexx Environment

Page [255]

This section of the manual describes the following Rexx features:
1. Establishing your Rexx environment

2. Using Rexx with ISPF

3. Using Rexx in the background (batch jobs)

4. Debugging your Rexx program

5. Trapping Errors

6. Examples

Page [256]

Establishing Your Rexx Environment

Establishing your Rexx environment is simply a matter of allowing the system to quickly
and easily find your commands, so you don’t have to type in lengthy strings to execute your
commands. Like so many things, there are several ways to do this.

Regardless of the method you choose, you need to pick an existing library, or create a new one.
To create a new Rexx exec library (a library from which all of your execs will be called), either

use ISPF 3.2, then option M, or you can do this from TSO by issuing the following commands:
Address TSO
"Free Fi (NEWDA)"
"delete REXX.EXEC"
"Alloc Fi (NEWDA) DA (REXX.EXEC) new space (15 1) dir(45) track" ,
"DSNType (Library)" ,
"dsorg (PO) recfm(V B) lrecl(255) blksize(0)"
"Free Fi (NEWDA)"

Now, you have to point the system to your Rexx exec library. There are five options that
I can think of. I will discuss the simplest first, to the most involved.

1. Simply allocate DDName SYSEXEC to your library:
"Free Fi (SYSEXEC)"
"Alloc Fi(SYSEXEC) DA (REXX.EXEC) SHR”

The problem with this is that this unallocates ALL other concatenated libraries that
SYSEXEC was pointing to. For short-term or emergency purposes, this will work. But it
could be that the successful processing in your system will depend on those libraries being
available.

2. You could research to see what was currently allocated to SYSEXEC (LISTA SY ST). Then,
after freeing DDName SYSEXEC, you would allocate your exec library to SYSEXEC, and
then reallocate all of the system libraries that were previously allocated to it. The problem
with this was that if the system administrators responsible for the concatenation of your
procedure libraries changed the list of files allocated to SYSEXEC, you would not have that
updated list available to you.

3. Some shops write their logon procedures so you could pass it the name of a library that you
wanted to allocate in front of (or in back of) the list of system exec or clist libraries. There
was a lot of room for error in this method. If that is not available to you, proceed to the next
item.

4 . Whenever you log on to TSO, allocate DDName SYSUEXEC to your Rexx Exec library:
"Alloc Fi (SYSUEXEC) DA (REXX.EXEC) SHR".

Then issue the ALTLIB command.
"ALTLIB Activate User (exec)"

There is on big problem with this method: you must issue the ACTIVATE portion wherever
you will be working.

If you issue the Activate within TSO, and before you start ISPF, then your ISPF session will
not see that allocation, and your commands will not be available. If you enter ISPF, and then
split screens, the commands are not available to you on that side until you issue the Activate
on that side. I don’t know if this is a design feature or a bug, but it is definitely problematic.

Page [257]

5. Concatenate your Rexx Exec library to the top of the current SYSEXEC list, regardless of
what is currently allocated to it. This differs from #2 above in that you don’t have to
explicitly supply the names of the libraries. This option requires the use of a tool that will do
this dynamically. | have created that tool, and it is called ConcatL. Check this manual for the
source.

Page [258]

Using Rexx with ISPF

You can invoke the ISPF editor or browser from within a Rexx exec. Furthermore, you
can run a Rexx exec upon beginning the edit of a dataset. This feature is called an ISPF edit
macro.

ISPF Browser
To browse a dataset from within a Rexx exec:
ADDRESS "ISPEXEC" "BROWSE Dataset (dsn)"
where

dsn is the datasetname of the file you wish to browse

ISPF Editor
To edit a dataset from within a Rexx exec:
ADDRESS "ISPEXEC" "EDIT Dataset (dsn) Macro (macname)"
where

dsn is the datasetname of the file you wish to edit
macname is the name of the ISPF Rexx exec that will function as the ISPF macro.

ISPF Edit Macros
The purpose of an ISPF edit macro is to perform one or more ISPF edit commands on a
dataset immediately after opening it for edit. If you need to do something to a dataset after it is
opened for edit, an edit macro may be the way to accomplish this.

A complete dissertation of ISPF edit macros is beyond the scope of this book, but |
provide enough to at least let you know how they are used in conjunction with Rexx.

An ISPF edit macro can be used to reformat or restructure data in a dataset prior to the
dataset being presented to the user for editing.

The first line in an ISPF macro is one to tell the Rexx exec that it is to function as an
ISPF macro:

Address "ISREDIT" "Macro Process".

Just about any ISPF editor primary command can be used in an ISPF macro. Simply
precede the command with Address "ISREDIT".

This is an example of an ISPF macro that is used to edit the output of the TSO command
LISTA SY ST (seethe "LA" exec in the examples):

/* REXX - LAE - Edit macro for LA - Rexx Exec */

/* Written by David Grund, April 7, 1995 */

1 ADDRESS "ISREDIT" "MACRO PROCESS"
2 ADDRESS "ISREDIT" "EXCLUDE ALL --DDNAME 1"

Page [259]

3 ADDRESS "ISREDIT"™ "EXCLUDE ALL ' keep' 1 "
4 ADDRESS "ISREDIT" "Delete ALL X"
5 ADDRESS "ISREDIT" "C 'KEEP' '-———"---—--———— ' word all 12"

Line 1 tells the Exec that it is an ISPF macro.

Line 2 is an ISPF command that excludes all lines where "--DDNAME" appears in column 1.
Line 3 is an ISPF command that does the same thing with a different character string.

Line 4 tells ISPF to delete all excluded lines (those that were excluded by the previous two lines)

Line 5 tells ISPF to change the all occurrences of the string "KEEP" that start in column 12 to 14
dashes.

Page [260]

Using Rexx in the background (batch jobs)

As long as your Rexx exec is not interactive, you should have no problem running it in
the background, that is, via a job you submit from your terminal.

A good candidate for a Rexx exec that should run in the background is one that will take
a lot of CPU time, or produce a lot of output. By running it in the background, you can free up
your terminal to do other things.

Instead of allocating files from within your Rexx exec, you would allocate them via the
JCL. You could keep the allocations buried within your Rexx exec, but then you will be hiding
the datasetname from your user. Unless this is what you specifically want to do, put the DD
statement for that file in the JCL, and remove the allocate step from your Rexx exec.

An example of JCL for running a Rexx exec in the background is shown:
1 //STEP010 EXEC PGM=IKJEFTO1

2 //SYSTSPRT DD SYSOUT=*

3 //SYSTSIN DD *

4 EXEC 'GRUNDDAV.REXX.EXEC (TESTL1) '

5 /*

Note that this JCL can be used for executing any TSO command, not just Rexx execs.
Line 1 executes program IKJEFTO1, which is the background TSO command processor.
Line 2 allocates the TSO SYSOUT dataset.

Line 3 allocates the TSO SYSIN dataset

Line 4 executes the TSO command. In this case, it's an exec from my exec PDS.

(Line 5 is simply the JES end-of-data statement.)

Page [261]

Debugging your Rexx program

If your program operates in a manner that doesn't seem quite right, and the cause is not
immediately evident, it is probably time to go into debugging mode. Debugging is the process of
putting code into your program to make your program tell you where it is, what it is about to do,
or what it has done.

Typically, you would not leave any "active” debugging code in your production program.
Instead of deleting it, you could comment it out, but if there is too much, it could detract from the
readability of the program.

There are several ways to debug a Rexx exec.

One way is to put "Say" statements in strategic locations. This will tell you what paths
the program is taking. Along this same line is commenting out instructions that you suspect to be
causing the problems.

Another way is to use the Rexx Trace facilities.

| have always used the first method, because it is simpler, easier to "unplug”, and gave
me the same end result. The second method can hammer you with output that can serve more to
confuse you than to help you. And to top it off, | think the Rexx Trace facilities are a little
complicated. But it still warrants a short discussion, so here it is.

To interrupt your Rexx program from running, press the ATTN, or PA1 key. The
program will break out of its current processing, and if there is code left to execute, the following
will be displayed:

ENTER HI TO END, A NULL LINE TO CONTINUE, OR AN IMMEDIATE COMMAND+ -
You have several options for a response:

1) Enter key- The program will continue running

2) HI (Halt Interpret)- The program will end.

3) HT (Halt Typing)- The program will stop displaying output.

4) RT (Resume Typing)- The program will resume displaying output

5) TS (Trace Start)- Rexx will enter Interactive Trace Mode

6) TE (Trace End)- Rexx will exit Interactive Trace Mode

Interactive Trace Mode
Interactive Trace Mode is where Rexx will display each of the lines as it executes them,
prefixed by the line numbers. When it pauses for input, you can change the value of a variable,
or hit Enter to continue processing.

Page [262]

Trapping Errors

Trapping Errors is the process of detecting certain program conditions, and then acting
based on those conditions.

This facility may be used in debugging, but can also be used in a production program (but
carefully).

Error-trapping instructions:

Signal On condition

Signal Off condition

Call On condition Name subroutinename

Signal On condition
This instruction will effect a transfer of control to a designated location in the program
whenever a certain condition is detected by the program. After the condition is handled, the
program terminates.

Signal Off condition

This instruction will cancel the effects of a Signal On for this particular condition only.

Call On condition Name subroutinename
This instruction will cause the program to perform a call to subroutine every time the
program detects a certain condition. After the condition is handled, the subroutine returns control
to the next sequential instruction iun the program. The subroutine cannot return any values.
Naming a subroutine is optional.

Condition

The condition cited in the above instructions can be one of the following:
1. Syntax- Rexx encountered a syntax error in an instruction.
2. Error - A TSO or ISPF command returned a non-zero return code
3. Failure- A command that was passed to the environment has failed
4. NoValue- A variable was never given a value. Typically, this is not an error, because Rexx, by
default, treats an unassigned variable as a literal.
5. Halt- The PA1/Attn key was hit.

Page [263]

Examples
The following Rexx exec will be used in each of the examples. For each example, the "Main
processing™ section of the program will be different.

/* Rexx program to demonstrate error-trapping */
Signal On Syntax

Call On Error Name Error Handler

Call On Failure

Signal On NoValue

Signal On Halt

(Main processing section)
Exit

Syntax:
Say "I am in the Syntax condition-handling routine now."
Say "I am going to terminate the program because of this"
Exit

Error Handler:
Say "I am in the Error condition-handling routine now."
Say "I am going to continue processing"

Return

Failure:
Say "I am in the Failure condition-handling routine now."
Say "I am going to continue processing"

Return

NoValue:
Say "I am in the NoValue condition-handling routine now."
Say "I am going to terminate the program because of this"
Exit

Halt:
Say "I am in the Halt condition-handling routine now."
Say "I think you hit the attention key!"
Say "I am going to terminate the program because of this"
Exit

The following illustrates the output from running the above Rexx exec, causing different

conditions to occur. We do this by replacing the "main processing section™ above with each of
the examples.

Page [264]

Example 1
Main processing section:

Say "1) This statement is perfect, and will generate no errors."
Say "2) The next statement will generate a Syntax condition"

PI = 3.1416

Circumference = PI *

Displays:

1) This statement is perfect, and will generate no errors.
2) The next statement will generate a Syntax condition

I am in the Syntax condition-handling routine now.

I am going to terminate the program because of this

Example 2
Main processing section:

Say "3) The next statement will generate a Error condition"
"Delete junk.data.set"

Displays:

3) The next statement will generate a Error condition

ERROR QUALIFYING XCON620.JUNK.DATA.SET

** DEFAULT SERVICE ROUTINE ERROR CODE 20, LOCATE ERROR CODE 8
LASTCC=8

I am in the Error condition-handling routine now.

I am going to continue processing

(The dataset did not exist)

Example 3
Main processing section:

Say "4) The next statement will generate a Failure condition"
"This is not a good command"

Displays:
4) The next statement will generate a Failure condition
COMMAND THIS NOT FOUND
10 *-* "This is not a good command"
+++ RC(-3) +++
I am in the Failure condition-handling routine now.
I am going to continue processing

Page [265]

Example 4
Main processing section:

Say "5) The next statement will generate a NoValue condition"
Say "My age is " MyAge

Displays:
5) The next statement will generate a NoValue condition

I am in the NoValue condition-handling routine now.
I am going to terminate the program because of this

Page [266]

Appendix

Rexx instructions

Address If Options Return
Arg Interpret Parse Say
Call Iterate Procedure Select
Do Leave Pull Signal
Drop Nop Push Trace
Exit Numeric Queue Upper

Rexx functions

Abbrev C2X Fuzz Reverse Value

Abs Datatype Index Right Verify
Address Date Insert Sign Word

Arg DBCS Justify Sourceline WordIndex
Bitand Delstr LastPos Space WordLength
Bitor Delword Left Strip WordPos
Bitxor Digits Length Substr Words
B2X D2C Linesize Subword XRange
Center D2X Max Symbol X2C
Centre ErrorText Min Time X2D
Compare Externals Overlay Trace

Condition Find Pos Translate

Copies Form Queued Trunc

C2D Format Random Userid

TSO External functions

ListDSI Storage
Msg SYSDSN
OutTrap SysVar
Prompt

TSO Commands

DelStack HI QBuf SubCom
DropBuf HT QElem TE
ExeclO MakeBuf QStack TS
ExecUtil NewsStack RT

Page [267]

Other Rexx References
The MVS QuickRef documentation (on TSO) also contains extensive technical
documentation on Rexx (available only in some shops). This feature is commonly
available via the “QW” command.

Book Manager is available in many shops:

Bookshelf: IKJ2BI01 - TSO/E V2R4 REXX/MVS Reference
Book name: 1KJ2A303 TSO/E V2R4 REXX/MVS Reference
Book name: 1KJ2C305 TSO/E V2R4 REXX/MVS User's Guide

Page [268]

The End

Page [269]

