How to Read a File CICS

IDENTIFICATIO DIVISION.

PROGRAM-ID. AD12GM.
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY FILE01.
COPY FILE02.
01 COMMAREA.
02 VARS PIC X(4).
01 REC1.
02 EID2 PIC X(4).
02 FILLER PIC X.
02 ENAME2 PIC X(10).
02 FILLER PIC X.
02 ESAL2 PIC 9(5).
02 FILLER PIC X(59).
77 LENG PIC S9(4) COMP.
PROCEDURE DIVISION.
MOVE LOW-VALUES TO FILEI.
MOVE LOW-VALUES TO FILE1I.
MOVE LOW-VALUES TO FILEO.
MOVE LOW-VALUES TO FILE1O.
EXEC CICS SEND
MAP(‘FILE1’)
MAPSET(‘FILE02’)
ERASE
END-EXEC.
PERFORM READ-PARA.
EXEC CICS SEND
MAP(‘FILE’)
MAPSET(‘FILE01’)
END-EXEC.
EXEC CICS RETURN END-EXEC.
STOP RUN.
READ-PARA.
EXEC CICS RECEIVE
MAP(‘FILE1’)
MAPSET(‘FILE02’)
END-EXEC.
MOVE EID1I TO EID2.
EXEC CICS READ
FILE(‘FILE001’)
INTO(REC1)
RIDFLD(EID2)
LENGTH(LENGTH OF REC1)
END-EXEC.
MOVE EID2 TO EIDO.
MOVE ENAME2 TO ENAMEO.
MOVE ESAL2 TO ESALO.

Keep Reading

Latest from the Blog

Azure Data Factory (ADF): The Complete Beginner-Friendly Guide (2026 Edition)

Azure Data Factory (ADF) is Microsoft’s fully managed, cloud-based data integration and orchestration service. It helps you collect data from different sources, transform it at scale, and load it into your preferred analytics or storage systems. Whether you are working with Azure SQL, on-premises databases, SaaS applications, or big-data systems, ADF gives you a unified…

AWS SageMaker + S3 Tutorial: Build, Train, and Deploy a LiDAR ML Model

This end-to-end tutorial shows how to upload LiDAR images to AWS S3, preprocess point cloud data, train an ML model in Amazon SageMaker, deploy the model, and store prediction outputs back in S3. Includes clear practical steps for beginners and ML engineers.