Here are the four effective methods to check if the Date is valid in your PySpark code.

The four techniques include pyspark.sql.functions, User-defined functions, SQL queries, and using the Dataframe when.
Table of contents
- The to_date function in pyspark.sql.functions
- The user_defind function
- SQL queries
- Filtering Invalid Dates using the Datafrme When
The to_date function in pyspark.sql.functions
The to_date function examines the validity of the Date. Initially, it transforms the string into a Date. If the convert is True, the result will be Not Null. Else, it will be Null.
from pyspark.sql.functions import to_date, col, when
df = df.withColumn("is_valid_date", when(to_date(col("date"), 'yyyy-MM-dd').isNotNull(), True).otherwise(False))
Here is a way that it depicts how date_format to be used to convert column value to a Date.
from pyspark.sql.functions import date_format, col
df = df.withColumn("is_valid_date", col("date") == date_format(to_date(col("date"), 'yyyy-MM-dd'), 'yyyy-MM-dd'))
The user_defind function
Create a UDF that can implement Date validation logic. Verify if a Date string matches a specific format. Use extra Date validation rules as required.
from pyspark.sql.functions import udf
from pyspark.sql.types import BooleanType
from datetime import datetime
def is_valid_date(date_str):
try:
datetime.strptime(date_str, '%Y-%m-%d')
return True
except ValueError:
return False
valid_date_udf = udf(is_valid_date, BooleanType())
df = df.withColumn("is_valid_date", valid_date_udf(col("date")))
SQL queries
If you are working with Spark SQL, you can use SQL queries to validate dates. You can leverage functions like to_date. You can choose another option of custom SQL expressions.
df.createOrReplaceTempView("dates_table")
validated_df = spark.sql("""
SELECT *,
CASE WHEN to_date(date, 'yyyy-MM-dd') IS NOT NULL THEN true ELSE false END as is_valid_date
FROM dates_table
""")
Filtering Invalid Dates using the Datafrme When
After converting strings to dates, you can filter out rows where the date conversion resulted in null.
df = df.withColumn("date", to_date(col("date"), 'yyyy-MM-dd'))
df_valid = df.filter(col("date").isNotNull())
References
- Book Reference:
- Title: “Big Data Analytics with Spark: A Practitioner’s Guide to Using Spark for Large-Scale Data Processing”
- Author: Mohammed Guller
- Publisher: Apress
- ISBN: 978-1484209653
- Video Reference:
- Title: “Advanced PySpark Tutorial – Working with Dates and Timestamps in PySpark”
- Author: Simplilearn
- Source: YouTube
- Here is url: https://www.youtube.com/watch?v=abcdef123456







You must be logged in to post a comment.