Here are the four effective methods to check if the Date is valid in your PySpark code.

How to Check Valid Date in PySpark
Photo by Max Vakhtbovycn on Pexels.com

The four techniques include pyspark.sql.functions, User-defined functions, SQL queries, and using the Dataframe when.

Table of contents

  1. The to_date function in pyspark.sql.functions
  2. The user_defind function
  3. SQL queries
  4. Filtering Invalid Dates using the Datafrme When

The to_date function in pyspark.sql.functions

The to_date function examines the validity of the Date. Initially, it transforms the string into a Date. If the convert is True, the result will be Not Null. Else, it will be Null.

from pyspark.sql.functions import to_date, col, when

df = df.withColumn("is_valid_date", when(to_date(col("date"), 'yyyy-MM-dd').isNotNull(), True).otherwise(False))

Here is a way that it depicts how date_format to be used to convert column value to a Date.

from pyspark.sql.functions import date_format, col

df = df.withColumn("is_valid_date", col("date") == date_format(to_date(col("date"), 'yyyy-MM-dd'), 'yyyy-MM-dd'))

The user_defind function

Create a UDF that can implement Date validation logic. Verify if a Date string matches a specific format. Use extra Date validation rules as required.

from pyspark.sql.functions import udf
from pyspark.sql.types import BooleanType
from datetime import datetime

def is_valid_date(date_str):
    try:
        datetime.strptime(date_str, '%Y-%m-%d')
        return True
    except ValueError:
        return False

valid_date_udf = udf(is_valid_date, BooleanType())
df = df.withColumn("is_valid_date", valid_date_udf(col("date")))

SQL queries

If you are working with Spark SQL, you can use SQL queries to validate dates. You can leverage functions like to_date. You can choose another option of custom SQL expressions.

df.createOrReplaceTempView("dates_table")

validated_df = spark.sql("""
    SELECT *,
           CASE WHEN to_date(date, 'yyyy-MM-dd') IS NOT NULL THEN true ELSE false END as is_valid_date
    FROM dates_table
""")

Filtering Invalid Dates using the Datafrme When

After converting strings to dates, you can filter out rows where the date conversion resulted in null.

df = df.withColumn("date", to_date(col("date"), 'yyyy-MM-dd'))
df_valid = df.filter(col("date").isNotNull())

References

  • Book Reference:
    • Title: “Big Data Analytics with Spark: A Practitioner’s Guide to Using Spark for Large-Scale Data Processing”
    • Author: Mohammed Guller
    • Publisher: Apress
    • ISBN: 978-1484209653
  • Video Reference: