Here’s a simplified example using AWS Kafka, Lambda, SQS, an SQS Poller Lambda (APIGEE), and Kinesis. This shows the flow and includes code snippets to assist with implementation.

AWS Data Pipeline

Pipeline Overview

  1. AWS Kafka (Amazon MSK):
    • Acts as the message broker. Data producers send events to Kafka topics.
  2. AWS Lambda (Kafka Consumer):
    • Consumes messages from Kafka.
    • Processes and forwards them to an SQS queue.
  3. Amazon SQS:
    • Buffers the processed data for downstream applications.
    • Triggers the next Lambda function.
  4. SQS Poller Lambda (APIGEE):
    • Polls the SQS queue for messages.
    • Performs additional processing (e.g., transformation or enrichment).
    • Sends data to Amazon Kinesis.
  5. Amazon Kinesis:
    • Provides real-time streaming for analytics or other downstream consumers.

Step-by-Step Implementation

1. Set up Kafka

  • Deploy an Amazon MSK cluster (Managed Streaming for Kafka) or use a self-hosted Kafka cluster.
  • Create a topic for publishing messages.
kafka-topics.sh --create --topic example-topic --zookeeper zookeeper:2181 --replication-factor 1 --partitions 3

To be the best, you must be able to handle the worst

-Wilson Kanadi

2. Kafka Consumer Lambda

  • Configure an AWS Lambda function as the consumer for your Kafka topic.

IAM Role: Ensure the Lambda role has permissions for:

  • Reading from Kafka.
  • Writing to SQS.

Lambda Code:

import boto3
import json

sqs = boto3.client('sqs')
QUEUE_URL = 'https://sqs.<region>.amazonaws.com/<account-id>/<queue-name>'

def lambda_handler(event, context):
for record in event['records']:
kafka_message = record['value']

# Forward to SQS
response = sqs.send_message(
QueueUrl=QUEUE_URL,
MessageBody=kafka_message
)
print(f"Message sent to SQS: {response['MessageId']}")
return {'statusCode': 200, 'body': 'Processed successfully'}

Kafka Trigger Configuration:

  • Set the event source mapping in AWS Lambda to your Kafka topic.

3. Amazon SQS

  • Create an SQS queue to hold messages.
aws sqs create-queue --queue-name example-queue

Ingesting Data from Kinesis to Delta Live Tables

4. SQS Poller Lambda (APIGEE)

  • This Lambda function polls the SQS queue for messages and processes them before sending them to Kinesis.

Lambda Code:

import boto3
import json

kinesis = boto3.client('kinesis')
STREAM_NAME = 'example-kinesis-stream'

def lambda_handler(event, context):
for record in event['Records']:
message_body = record['body']
print(f"Processing message: {message_body}")

# Transform/Process the message
transformed_message = message_body.upper() # Example transformation

# Send to Kinesis
response = kinesis.put_record(
StreamName=STREAM_NAME,
Data=json.dumps({'message': transformed_message}),
PartitionKey='partition-key'
)
print(f"Sent to Kinesis: {response['SequenceNumber']}")

return {'statusCode': 200, 'body': 'Messages processed'}

SQS Trigger Configuration:

  • Configure the Lambda function as an event source for the SQS queue.

Rich people believe “I can create my life”. Poor people believe ” it happens to me”

Anonymous

5. Amazon Kinesis

  • Create a Kinesis Data Stream for real-time processing.
aws kinesis create-stream --stream-name example-kinesis-stream --shard-count 1
  • Set up downstream consumers for analytics or further processing.

Flow Summary

  1. The producer sends data to Kafka.
  2. Kafka Consumer Lambda reads messages and forwards them to SQS.
  3. SQS Poller Lambda (APIGEE) processes messages from SQS and streams them into Kinesis.
  4. Kinesis enables real-time analytics.

Further Enhancements

  • Monitoring: Use Amazon CloudWatch to track Lambda execution and errors.
  • Retries: Configure SQS Dead Letter Queues for unprocessed messages.
  • Scaling: Adjust Kafka partitions, Lambda concurrency, and Kinesis shard count to handle high throughput.