Here’s a simplified example using AWS Kafka, Lambda, SQS, an SQS Poller Lambda (APIGEE), and Kinesis. This shows the flow and includes code snippets to assist with implementation.

Pipeline Overview
- AWS Kafka (Amazon MSK):
- Acts as the message broker. Data producers send events to Kafka topics.
- AWS Lambda (Kafka Consumer):
- Consumes messages from Kafka.
- Processes and forwards them to an SQS queue.
- Amazon SQS:
- Buffers the processed data for downstream applications.
- Triggers the next Lambda function.
- SQS Poller Lambda (APIGEE):
- Polls the SQS queue for messages.
- Performs additional processing (e.g., transformation or enrichment).
- Sends data to Amazon Kinesis.
- Amazon Kinesis:
- Provides real-time streaming for analytics or other downstream consumers.
Step-by-Step Implementation
1. Set up Kafka
- Deploy an Amazon MSK cluster (Managed Streaming for Kafka) or use a self-hosted Kafka cluster.
- Create a topic for publishing messages.
kafka-topics.sh --create --topic example-topic --zookeeper zookeeper:2181 --replication-factor 1 --partitions 3
To be the best, you must be able to handle the worst
-Wilson Kanadi
2. Kafka Consumer Lambda
- Configure an AWS Lambda function as the consumer for your Kafka topic.
IAM Role: Ensure the Lambda role has permissions for:
- Reading from Kafka.
- Writing to SQS.
Lambda Code:
import boto3
import json
sqs = boto3.client('sqs')
QUEUE_URL = 'https://sqs.<region>.amazonaws.com/<account-id>/<queue-name>'
def lambda_handler(event, context):
for record in event['records']:
kafka_message = record['value']
# Forward to SQS
response = sqs.send_message(
QueueUrl=QUEUE_URL,
MessageBody=kafka_message
)
print(f"Message sent to SQS: {response['MessageId']}")
return {'statusCode': 200, 'body': 'Processed successfully'}
Kafka Trigger Configuration:
- Set the event source mapping in AWS Lambda to your Kafka topic.
3. Amazon SQS
- Create an SQS queue to hold messages.
aws sqs create-queue --queue-name example-queue
4. SQS Poller Lambda (APIGEE)
- This Lambda function polls the SQS queue for messages and processes them before sending them to Kinesis.
Lambda Code:
import boto3
import json
kinesis = boto3.client('kinesis')
STREAM_NAME = 'example-kinesis-stream'
def lambda_handler(event, context):
for record in event['Records']:
message_body = record['body']
print(f"Processing message: {message_body}")
# Transform/Process the message
transformed_message = message_body.upper() # Example transformation
# Send to Kinesis
response = kinesis.put_record(
StreamName=STREAM_NAME,
Data=json.dumps({'message': transformed_message}),
PartitionKey='partition-key'
)
print(f"Sent to Kinesis: {response['SequenceNumber']}")
return {'statusCode': 200, 'body': 'Messages processed'}
SQS Trigger Configuration:
- Configure the Lambda function as an event source for the SQS queue.
Rich people believe “I can create my life”. Poor people believe ” it happens to me”
Anonymous
5. Amazon Kinesis
- Create a Kinesis Data Stream for real-time processing.
aws kinesis create-stream --stream-name example-kinesis-stream --shard-count 1
- Set up downstream consumers for analytics or further processing.
Flow Summary
- The producer sends data to Kafka.
- Kafka Consumer Lambda reads messages and forwards them to SQS.
- SQS Poller Lambda (APIGEE) processes messages from SQS and streams them into Kinesis.
- Kinesis enables real-time analytics.
Further Enhancements
- Monitoring: Use Amazon CloudWatch to track Lambda execution and errors.
- Retries: Configure SQS Dead Letter Queues for unprocessed messages.
- Scaling: Adjust Kafka partitions, Lambda concurrency, and Kinesis shard count to handle high throughput.







You must be logged in to post a comment.