Here’s a detailed comparison of Hadoop vs AWS Glue vs Databricks vs Snowflake, focusing on architecture, processing, scalability, cost, and fault tolerance — perfect for interviews and architectural understanding 👇

🧩 1. Overview of Hadoop, AWS Glue, Databricks, and Snowflake

PlatformTypePrimary Purpose
HadoopOn-premise / Open-source big data frameworkDistributed data storage + batch processing
AWS GlueServerless ETL serviceData integration & transformation in AWS
DatabricksUnified Data + AI platform (Spark-based)Scalable ETL, analytics, ML, and AI
SnowflakeCloud data warehouseHigh-performance analytics & data sharing

⚙️ 2. Architecture Comparison: Storage & Compute

FeatureHadoopAWS GlueDatabricksSnowflake
Core EngineMapReduce / SparkApache SparkApache Spark + Delta LakeProprietary SQL engine
StorageHDFSS3 (or other AWS storage)S3 / ADLS / GCSCloud-managed (S3 / GCS / Azure Blob)
Compute-Storage Separation❌ Tight coupled✅ Yes✅ Yes✅ Yes
Serverless❌ No✅ Fully serverless⚙️ Semi-serverless (managed cluster)✅ Fully serverless
Processing TypeBatchBatch / ETLBatch + Streaming + MLAnalytical SQL (batch + micro-batch)

🚀 3. Parallel Processing & Query Optimization

FeatureHadoopAWS GlueDatabricksSnowflake
ParallelismMapReduce (block-based)Spark executorsSpark optimized (Photon engine in runtime)Multi-cluster compute
OptimizationManual tuning (YARN configs)Automatic scalingCatalyst + AQE (Adaptive Query Execution)Automatic query optimization
CachingDisk-basedIn-memory (Spark)In-memory + Delta CacheAutomatic result cache
Data Skew HandlingManualPartialAutomatic AQE handles skewAutomatic

🧮 4. Scalability and Auto-Scaling Features

FeatureHadoopAWS GlueDatabricksSnowflake
Scale TypeHorizontal (add nodes)Auto-scaled by AWSAuto-scale / cluster poolsAuto-scale warehouses
Elasticity❌ Manual scaling✅ Automatic✅ Cluster autoscaling✅ Multi-cluster auto-scaling
Max ConcurrencyLimited by clusterHighHighVery high (multi-cluster warehouses)

🧠 5. Fault Tolerance, Recovery & Time Travel

FeatureHadoopAWS GlueDatabricksSnowflake
Fault ToleranceYes (data replication in HDFS)Yes (Spark job retries)Yes (checkpointing, retries)Yes (replication, time travel)
Job RecoveryManual or via YARNAutomatic retry on node failureCheckpointing in Spark Streaming / DeltaBuilt-in failover, retry at query level
Data RecoveryReplication factorFrom S3 (durable storage)Delta Lake time travelTime Travel + Fail-safe
CheckpointingLimitedSupportedStrong support (Streaming)Not needed (managed snapshots)

💸 6. Cost, Maintenance, and Serverless Options

FeatureHadoopAWS GlueDatabricksSnowflake
InfrastructureUser-managedAWS managedManaged by DatabricksFully managed
Pricing ModelHardware + Ops costPay per DPU-secondPay per compute-hourPay per warehouse usage (credits)
MaintenanceManual (install/patch)NoneMinimalNone
Ease of UseComplexEasy (no infra mgmt)Developer-friendlyVery easy (SQL-focused)

📊 7. Use Cases: ETL, Analytics, Machine Learning

PlatformIdeal Use Cases
HadoopLegacy big data storage and batch ETL
AWS GlueServerless ETL jobs, metadata catalog, data prep for analytics
DatabricksUnified data engineering, streaming, ML/AI, Delta Lake
SnowflakeHigh-performance data warehouse, BI, ELT workloads

🧩 8. Key Takeaways: Choosing the Right Platform in 2025

ScenarioBest Platform
Large-scale batch processingDatabricks or Hadoop
Simple serverless ETL pipelineAWS Glue
Machine Learning + StreamingDatabricks
Fast SQL analytics / BI dashboardsSnowflake
Legacy on-prem data lakeHadoop

🧠 9. Interview Summary (Quick Recall)

ConceptHadoopGlueDatabricksSnowflake
EngineMapReduceSparkSparkSQL Engine
Managed
Serverless⚙️ Semi
ScalabilityManualAutoAutoAuto
Fault ToleranceHDFS replicationRetryDelta checkpointTime travel
ML SupportNoLimited✅ Yes❌ No
PerformanceLow (disk I/O)MediumHigh (Photon)Very High